1887

Abstract

Classical swine fever is one of the most important swine diseases worldwide and has tremendous socioeconomic impact. In this study, we focused on the signalling pathways of Toll-like receptors (TLRs) because of their roles in the detection and response to viral infections. To this end, two classical swine fever virus (CSFV) strains, namely the highly virulent CSFV Shimen strain and the avirulent C strain (a vaccine strain), were employed, and the expression of 19 immune effector genes was analysed by real-time PCR, Western blot analyses, ELISA and flow cytometry analyses. experiments were conducted with porcine monocyte-derived macrophages (pMDMs). The results showed that the mRNA and protein levels of TLR2, TLR4 and TLR7 were upregulated in response to CSFV infection, but TLR3 remained unchanged, and was downregulated after infection with the C strain and the Shimen virus, respectively. Furthermore, TLR3-mediated innate immune responses were inhibited in Shimen-strain-infected pMDMs by stimulation with poly(I : C). Accordingly, comprehensive analyses were performed to detect TLR-dependent cytokine responses and the activation of TLR signalling elements. CSFV infection induced mitogen-activated protein kinase activation, but did not elicit NFκB activation, thereby affecting the production of pro-inflammatory cytokines. The Shimen strain infection resulted in a significant activation of IFN regulatory factor IRF7 and suppression of IRF3. These data provided clues for understanding the effect of CSFV infection on the TLR-mediated innate immune response and associated pathological changes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000129
2015-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1732.html?itemId=/content/journal/jgv/10.1099/vir.0.000129&mimeType=html&fmt=ahah

References

  1. Abe T., Kaname Y., Hamamoto I., Tsuda Y., Wen X., Taguwa S., Moriishi K., Takeuchi O., Kawai T., other authors. (2007). Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell linesJ Virol 8189538966 [View Article][PubMed]. [Google Scholar]
  2. Akira S., Takeda K., Kaisho T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunityNat Immunol 2675680 [View Article][PubMed]. [Google Scholar]
  3. Balmelli C., Vincent I.E., Rau H., Guzylack-Piriou L., McCullough K., Summerfield A. (2005). FcγRII-dependent sensitisation of natural interferon-producing cells for viral infection and interferon-α responsesEur J Immunol 3524062415 [View Article][PubMed]. [Google Scholar]
  4. Bauhofer O., Summerfield A., Sakoda Y., Tratschin J.D., Hofmann M.A., Ruggli N. (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradationJ Virol 8130873096 [View Article][PubMed]. [Google Scholar]
  5. Becher P., Avalos Ramirez R., Orlich M., Cedillo Rosales S., König M., Schweizer M., Stalder H., Schirrmeier H., Thiel H.-J. (2003). Genetic and antigenic characterization of novel pestivirus genotypes: implications for classificationVirology 31196104 [View Article][PubMed]. [Google Scholar]
  6. Borca M.V., Gudmundsdottir I., Fernández-Sainz I.J., Holinka L.G., Risatti G.R. (2008). Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain BresciaVirus Res 1388996 [View Article][PubMed]. [Google Scholar]
  7. Brooks D.G., Trifilo M.J., Edelmann K.H., Teyton L., McGavern D.B., Oldstone M.B. (2006). Interleukin-10 determines viral clearance or persistence in vivo Nat Med 1213011309 [View Article][PubMed]. [Google Scholar]
  8. Carrasco C.P., Rigden R.C., Vincent I.E., Balmelli C., Ceppi M., Bauhofer O., Tâche V., Hjertner B., McNeilly F., other authors. (2004). Interaction of classical swine fever virus with dendritic cellsJ Gen Virol 8516331641 [View Article][PubMed]. [Google Scholar]
  9. Chang S., Dolganiuc A., Szabo G. (2007). Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteinsJ Leukoc Biol 82479487 [View Article][PubMed]. [Google Scholar]
  10. Chen L.J., Dong X.Y., Zhao M.Q., Shen H.Y., Wang J.Y., Pei J.J., Liu W.J., Luo Y.W., Ju C.M., Chen J.D. (2012). Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro in vivo Virol J 9293 [View Article][PubMed]. [Google Scholar]
  11. Darwich L., Balasch M., Plana-Durán J., Segalés J., Domingo M., Mateu E. (2003). Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigensJ Gen Virol 8434533457 [View Article][PubMed]. [Google Scholar]
  12. Edwards S., Fukusho A., Lefèvre P.-C., Lipowski A., Pejsak Z., Roehe P., Westergaard J. (2000). Classical swine fever: the global situationVet Microbiol 73103119 [View Article][PubMed]. [Google Scholar]
  13. Fiebach A.R., Guzylack-Piriou L., Python S., Summerfield A., Ruggli N. (2011). Classical swine fever virus Npro limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7J Virol 8580028011 [View Article][PubMed]. [Google Scholar]
  14. Gladue D.P., Zhu J., Holinka L.G., Fernandez-Sainz I., Carrillo C., Prarat M.V., O'Donnell V., Borca M.V. (2010). Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarrayVirus Res 1511018 [View Article][PubMed]. [Google Scholar]
  15. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. (2004). Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8Science 30315261529 [View Article][PubMed]. [Google Scholar]
  16. Honda K., Yanai H., Negishi H., Asagiri M., Sato M., Mizutani T., Shimada N., Ohba Y., Takaoka A., other authors. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune responsesNature 434772777 [View Article][PubMed]. [Google Scholar]
  17. Honda K., Takaoka A., Taniguchi T. (2006). Type I interferon gene induction by the interferon regulatory factor family of transcription factorsImmunity 25349360 [View Article][PubMed]. [Google Scholar]
  18. Jeong H.-J., Koo H.-N., Na H.-J., Kim M.-S., Hong S.-H., Eom J.-W., Kim K.-S., Shin T.-Y., Kim H.-M. (2002). Inhibition of TNF-α and IL-6 production by Aucubin through blockade of NF-κB activation RBL-2H3 mast cellsCytokine 18252259 [View Article][PubMed]. [Google Scholar]
  19. Kawai T., Akira S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptorsNat Immunol 11373384 [View Article][PubMed]. [Google Scholar]
  20. Kawai T., Akira S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunityImmunity 34637650 [View Article][PubMed]. [Google Scholar]
  21. Kawai T., Sato S., Ishii K.J., Coban C., Hemmi H., Yamamoto M., Terai K., Matsuda M., Inoue J., other authors. (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6Nat Immunol 510611068 [View Article][PubMed]. [Google Scholar]
  22. Lester S.N., Li K. (2014). Toll-like receptors in antiviral innate immunityJ Mol Biol 42612461264[PubMed].[CrossRef] [Google Scholar]
  23. Li J., Yu Y.J., Feng L., Cai X.B., Tang H.B., Sun S.K., Zhang H.Y., Liang J.J., Luo T.R. (2010). Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infectionVirus Res 1486070 [View Article][PubMed]. [Google Scholar]
  24. Luo X., Ling D., Li T., Wan C., Zhang C., Pan Z. (2009). Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-β by double-stranded RNACan J Microbiol 55698704 [View Article][PubMed]. [Google Scholar]
  25. Luo Y., Li S., Sun Y., Qiu H.J. (2014). Classical swine fever in China: a minireviewVet Microbiol 17216 [View Article][PubMed]. [Google Scholar]
  26. Moennig V. (2000). Introduction to classical swine fever: virus, disease and control policyVet Microbiol 7393102 [View Article][PubMed]. [Google Scholar]
  27. Negash A.A., Ramos H.J., Crochet N., Lau D.T., Doehle B., Papic N., Delker D.A., Jo J., Bertoletti A., other authors. (2013). IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and diseasePLoS Pathog 9e1003330 [View Article][PubMed]. [Google Scholar]
  28. Ning P., Zhang Y., Guo K., Chen R., Liang W., Lin Z., Li H. (2014). Discovering up-regulated VEGF-C expression in swine umbilical vein endothelial cells by classical swine fever virus ShimenVet Res 4548 [View Article][PubMed]. [Google Scholar]
  29. Python S., Gerber M., Suter R., Ruggli N., Summerfield A. (2013). Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease Erns PLoS Pathog 9e1003412 [View Article][PubMed]. [Google Scholar]
  30. Ruggli N., Tratschin J.-D., Schweizer M., McCullough K.C., Hofmann M.A., Summerfield A. (2003). Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro J Virol 7776457654 [View Article][PubMed]. [Google Scholar]
  31. Ruggli N., Summerfield A., Fiebach A.R., Guzylack-Piriou L., Bauhofer O., Lamm C.G., Waltersperger S., Matsuno K., Liu L., other authors. (2009). Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro J Virol 83817829 [View Article][PubMed]. [Google Scholar]
  32. Saitoh T., Satoh T., Yamamoto N., Uematsu S., Takeuchi O., Kawai T., Akira S. (2011). Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cellsImmunity 34352363 [View Article][PubMed]. [Google Scholar]
  33. Sánchez-Cordón P.J., Núñez A., Salguero F.J., Carrasco L., Gómez-Villamandos J.C. (2005). Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infectionJ Comp Pathol 132249260 [View Article][PubMed]. [Google Scholar]
  34. Summerfield A., Alves M., Ruggli N., de Bruin M.G.M., McCullough K.C. (2006). High IFN-α responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine feverJ Interferon Cytokine Res 26248255 [View Article][PubMed]. [Google Scholar]
  35. Takahashi K., Asabe S., Wieland S., Garaigorta U., Gastaminza P., Isogawa M., Chisari F.V. (2010). Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infectionProc Natl Acad Sci U S A 10774317436 [View Article][PubMed]. [Google Scholar]
  36. Wang Y., Wang Q., Lu X., Zhang C., Fan X., Pan Z., Xu L., Wen G., Ning Y., other authors. (2008). 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challengeVirology 374390398 [View Article][PubMed]. [Google Scholar]
  37. Zhang Y., Guo Y., Lv K., Wang K., Sun S. (2008). Molecular cloning and functional characterization of porcine toll-like receptor 7 involved in recognition of single-stranded RNA virus/ssRNAMol Immunol 4511841190 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000129
Loading
/content/journal/jgv/10.1099/vir.0.000129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error