1887

Abstract

Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces persistent diarrhoea in swine, resulting in severe economic losses in swine-producing countries. Insights into the interplay between PEDV infection and the innate immune system are necessary for understanding the associated mechanism of pathogenesis. The transcription factor NF-κB plays an important role in regulating host immune responses. Here, we elucidated for the first time to our knowledge the potential mechanism of PEDV-mediated NF-κB activation in porcine small intestinal epithelial cells (IECs). During PEDV infection, NF-κB p65 was found to translocate from the cytoplasm to the nucleus, and PEDV-dependent NF-κB activity was associated with viral dose and active replication. Using small interfering RNAs to screen different mRNA components of the Toll-like receptor (TLR) or RIG-I-like receptor signalling pathways, we demonstrated that TLR2, TLR3 and TLR9 contribute to NF-κB activation in response to PEDV infection, but not RIG-I. By screening PEDV structural proteins for their ability to induce NF-κB activities, we found that PEDV nucleocapsid protein (N) could activate NF-κB and that the central region of N was essential for NF-κB activation. Furthermore, TLR2 was involved in PEDV N-induced NF-κB activation in IECs. Collectively, these findings provide new avenues of investigation into the molecular mechanisms of NF-κB activation induced by PEDV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000133
2015-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1757.html?itemId=/content/journal/jgv/10.1099/vir.0.000133&mimeType=html&fmt=ahah

References

  1. Abujamra A.L., Spanjaard R.A., Akinsheye I., Zhao X., Faller D.V., Ghosh S.K. (2006). Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanismVirology 345390403 [View Article][PubMed]. [Google Scholar]
  2. Arce C., Ramírez-Boo M., Lucena C., Garrido J.J. (2010). Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium Comp Immunol Microbiol Infect Dis 33161174 [View Article][PubMed]. [Google Scholar]
  3. Berg R.K., Melchjorsen J., Rintahaka J., Diget E., Søby S., Horan K.A., Gorelick R.J., Matikainen S., Larsen C.S., other authors. (2012). Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNAPLoS One 7e29291 [View Article][PubMed]. [Google Scholar]
  4. Bren G.D., Trushin S.A., Whitman J., Shepard B., Badley A.D. (2009). HIV gp120 inducesNF-kappaB dependent, HIV replication that requires procaspase 8.PLoS One 4e4875 [View Article][PubMed]. [Google Scholar]
  5. da Silva L.F., Jones C. (2012). Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-κB-dependent transcription and beta interferon signaling pathwaysJ Virol 8616701682 [View Article][PubMed]. [Google Scholar]
  6. Debouck P., Pensaert M. (1980). Experimental infection of pigs with a new porcine enteric coronavirus, CV 777Am J Vet Res 41219223[PubMed]. [Google Scholar]
  7. DeDiego M.L., Nieto-Torres J.L., Regla-Nava J.A., Jimenez-Guardeño J.M., Fernandez-Delgado R., Fett C., Castaño-Rodriguez C., Perlman S., Enjuanes L. (2014). Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survivalJ Virol 88913924 [View Article][PubMed]. [Google Scholar]
  8. Ding Z., Fang L., Jing H., Zeng S., Wang D., Liu L., Zhang H., Luo R., Chen H., Xiao S. (2014). Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1J Virol 8889368945 [View Article][PubMed]. [Google Scholar]
  9. Dosch S.F., Mahajan S.D., Collins A.R. (2009). SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro Virus Res 1421927 [View Article][PubMed]. [Google Scholar]
  10. Egberink H.F., Ederveen J., Callebaut P., Horzinek M.C. (1988). Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777Am J Vet Res 4913201324[PubMed]. [Google Scholar]
  11. Eleouet J.F., Chilmonczyk S., Besnardeau L., Laude H. (1998). Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathwayJ Virol 7249184924[PubMed]. [Google Scholar]
  12. Fang Y., Fang L., Wang Y., Lei Y., Luo R., Wang D., Chen H., Xiao S. (2012). Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-κB activationVirol J 983 [View Article][PubMed]. [Google Scholar]
  13. Frieman M., Heise M., Baric R. (2008). SARS coronavirus and innate immunityVirus Res 133101112 [View Article][PubMed]. [Google Scholar]
  14. Fu Y., Quan R., Zhang H., Hou J., Tang J., Feng W.H. (2012). Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-κB signaling pathwayJ Virol 8676257636 [View Article][PubMed]. [Google Scholar]
  15. Haas F., Yamauchi K., Murat M., Bernasconi M., Yamanaka N., Speck R.F., Nadal D. (2014). Activation of NF-κB via endosomal Toll-like receptor 7 (TLR7) or TLR9 suppresses murine herpesvirus 68 reactivationJ Virol 881000210012 [View Article][PubMed]. [Google Scholar]
  16. Hofmann M., Wyler R. (1988). Propagation of the virus of porcine epidemic diarrhea in cell cultureJ Clin Microbiol 2622352239[PubMed]. [Google Scholar]
  17. Kocherhans R., Bridgen A., Ackermann M., Tobler K. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequenceVirus Genes 23137144 [View Article][PubMed]. [Google Scholar]
  18. Lee S.M., Kleiboeker S.B. (2005). Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradationVirology 3424759 [View Article][PubMed]. [Google Scholar]
  19. Leoni V., Gianni T., Salvioli S., Campadelli-Fiume G. (2012). Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κBJ Virol 8665556562 [View Article][PubMed]. [Google Scholar]
  20. Liao Q.J., Ye L.B., Timani K.A., Zeng Y.C., She Y.L., Ye L., Wu Z.H. (2005). Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirusActa Biochim Biophys Sin (Shanghai) 37607612 [View Article][PubMed]. [Google Scholar]
  21. Lin C.N., Chung W.B., Chang S.W., Wen C.C., Liu H., Chien C.H., Chiou M.T. (2014). US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014J Vet Med Sci 7612971299.[CrossRef] [Google Scholar]
  22. Liu X., Fitzgerald K., Kurt-Jones E., Finberg R., Knipe D.M. (2008). Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor proteinProc Natl Acad Sci U S A 1051133511339 [View Article][PubMed]. [Google Scholar]
  23. Liu F., Li G., Wen K., Bui T., Cao D., Zhang Y., Yuan L. (2010). Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probioticsViral Immunol 23135149 [View Article][PubMed]. [Google Scholar]
  24. Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods 25402408 [View Article][PubMed]. [Google Scholar]
  25. Luo R., Xiao S., Jiang Y., Jin H., Wang D., Liu M., Chen H., Fang L. (2008). Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathwayMol Immunol 4528392846 [View Article][PubMed]. [Google Scholar]
  26. Matthews K.L., Coleman C.M., van der Meer Y., Snijder E.J., Frieman M.B. (2014). The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signallingJ Gen Virol 95874882 [View Article][PubMed]. [Google Scholar]
  27. May M.J., Ghosh S. (1998). Signal transduction through NF-kappa BImmunol Today 198088 [View Article][PubMed]. [Google Scholar]
  28. Moynagh P.N. (2005). The NF-κB pathwayCell Sci 11845894592 [View Article][PubMed]. [Google Scholar]
  29. Oem J.K., Jackel-Cram C., Li Y.P., Kang H.N., Zhou Y., Babiuk L.A., Liu Q. (2008). Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-kappaBArch Virol 153293301 [View Article][PubMed]. [Google Scholar]
  30. Ojkic D., Hazlett M., Fairles J., Marom A., Slavic D., Maxie G., Alexandersen S., Pasick J., Alsop J., Burlatschenko S. (2015). The first case of porcine epidemic diarrhea in CanadaCan Vet J 56149152[PubMed]. [Google Scholar]
  31. Park S., Kim S., Song D., Park B. (2014). Novel porcine epidemic diarrhea virus variant with large genomic deletion, South KoreaEmerg Infect Dis 2020892092 [View Article][PubMed]. [Google Scholar]
  32. Pitman R.S., Blumberg R.S. (2000). First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune systemJ Gastroenterol 35805814 [View Article][PubMed]. [Google Scholar]
  33. Samanta M., Iwakiri D., Kanda T., Imaizumi T., Takada K. (2006). EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFNEMBO J 2542074214 [View Article][PubMed]. [Google Scholar]
  34. Schierack P., Nordhoff M., Pollmann M., Weyrauch K.D., Amasheh S., Lodemann U., Jores J., Tachu B., Kleta S., other authors. (2006). Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swineHistochem Cell Biol 125293305 [View Article][PubMed]. [Google Scholar]
  35. Shi D., Lv M., Chen J., Shi H., Zhang S., Zhang X., Feng L. (2014). Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virusViruses 612531273 [View Article][PubMed]. [Google Scholar]
  36. Smirnova K.V., Diduk S.V., Gurtsevich V.E. (2011). [Functional analysis of Epstein-Barr virus latent membrane proteins (LMP1) in patients with lymphoproliferative disorders]Biomed Khim 57114126(in Russian).[PubMed].[CrossRef] [Google Scholar]
  37. Song D., Park B. (2012). Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccinesVirus Genes 44167175 [View Article][PubMed]. [Google Scholar]
  38. Song S., Bi J., Wang D., Fang L., Zhang L., Li F., Chen H., Xiao S. (2013). Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-κB and p38 MAPK pathways in porcine alveolar macrophagesDev Comp Immunol 39265272 [View Article][PubMed]. [Google Scholar]
  39. Takeda S., Miyazaki D., Sasaki S., Yamamoto Y., Terasaka Y., Yakura K., Yamagami S., Ebihara N., Inoue Y. (2011). Roles played by toll-like receptor-9 in corneal endothelial cells after herpes simplex virus type 1 infectionInvest Ophthalmol Vis Sci 5267296736 [View Article][PubMed]. [Google Scholar]
  40. Thompson A.J., Locarnini S.A. (2007). Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune responseImmunol Cell Biol 85435445 [View Article][PubMed]. [Google Scholar]
  41. Uddin M.J., Kaewmala K., Tesfaye D., Tholen E., Looft C., Hoelker M., Schellander K., Cinar M.U. (2013). Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with ageRes Vet Sci 9592102 [View Article][PubMed]. [Google Scholar]
  42. Vlasova A.N., Marthaler D., Wang Q., Culhane M.R., Rossow K.D., Rovira A., Collins J., Saif L.J. (2014). Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014Emerg Infect Dis 2016201628 [View Article][PubMed]. [Google Scholar]
  43. Xing Y., Chen J., Tu J., Zhang B., Chen X., Shi H., Baker S.C., Feng L., Chen Z. (2013). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinaseJ Gen Virol 9415541567 [View Article][PubMed]. [Google Scholar]
  44. Xu X., Zhang H., Zhang Q., Dong J., Liang Y., Huang Y., Liu H.J., Tong D. (2013a). Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expressionVirol J 1026 [View Article][PubMed]. [Google Scholar]
  45. Xu X., Zhang H., Zhang Q., Huang Y., Dong J., Liang Y., Liu H.J., Tong D. (2013b). Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expressionVet Microbiol 164212221 [View Article][PubMed]. [Google Scholar]
  46. Yamamoto Y., Gaynor R.B. (2001). Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancerJ Clin Invest 107135142 [View Article][PubMed]. [Google Scholar]
  47. Zhao S., Gao J., Zhu L., Yang Q. (2014). Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cellsVirus Res 1923445 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000133
Loading
/content/journal/jgv/10.1099/vir.0.000133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error