1887

Abstract

Coxsackievirus A9 (CAV9), a member of the genus in the family , possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins V3 and V6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins V3 and V6, whereas V6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized V3 and V6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against V-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble V6, but not V3, bound to immobilized CAV9. Similarly, only soluble V6 blocked virus infectivity. These data suggest that CAV9 binding to V6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.004838-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/1/197.html?itemId=/content/journal/jgv/10.1099/vir.0.004838-0&mimeType=html&fmt=ahah

References

  1. Abraham, G. & Colonno, R. J.(1984). Many rhinovirus serotypes share the same cellular receptor. J Virol 51, 340–345. [Google Scholar]
  2. Benschop, K. S., Schinkel, J., Luken, M. E., van den Broek, P. J., Beersma, M. F., Menelik, N., van Eijk, H. W., Zaaijer, H. L., VandenBroucke-Grauls, C. M. & other authors(2006). Fourth human parechovirus serotype. Emerg Infect Dis 12, 1572–1575.[CrossRef] [Google Scholar]
  3. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W.(1997). Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.[CrossRef] [Google Scholar]
  4. Carson, S. D., Kim, K. S., Pirruccello, S. J., Tracy, S. & Chapman, N. M.(2007). Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. J Gen Virol 88, 3031–3038.[CrossRef] [Google Scholar]
  5. Chang, K. H., Auvinen, P., Hyypiä, T. & Stanway, G.(1989). The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. J Gen Virol 70, 3269–3280.[CrossRef] [Google Scholar]
  6. Duque, H., LaRocco, M., Golde, W. T. & Baxt, B.(2004). Interactions of foot-and-mouth disease virus with soluble bovine αVβ3 and αVβ6 integrins. J Virol 78, 9773–9781.[CrossRef] [Google Scholar]
  7. Ghazi, F., Hughes, P. J., Hyypiä, T. & Stanway, G.(1998). Molecular analysis of human parechovirus type 2 (formerly echovirus 23). J Gen Virol 79, 2641–2650. [Google Scholar]
  8. Harvala, H., Kalimo, H., Stanway, G. & Hyypiä, T.(2003). Pathogenesis of coxsackievirus A9 in mice: role of the viral arginine-glycine-aspartic acid motif. J Gen Virol 84, 2375–2379.[CrossRef] [Google Scholar]
  9. Hughes, P. J., Horsnell, C., Hyypiä, T. & Stanway, G.(1995). The coxsackievirus A9 RGD motif is not essential for virus viability. J Virol 69, 8035–8040. [Google Scholar]
  10. Hyypiä, T., Horsnell, C., Maaronen, M., Khan, M., Kalkkinen, N., Auvinen, P., Kinnunen, L. & Stanway, G.(1992). A distinct picornavirus group identified by sequence analysis. Proc Natl Acad Sci U S A 89, 8847–8851.[CrossRef] [Google Scholar]
  11. Mason, P. W., Rieder, E. & Baxt, B.(1994). RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A 91, 1932–1936.[CrossRef] [Google Scholar]
  12. Monaghan, P., Gold, S., Simpson, J., Zhang, Z., Weinreb, P. H., Violette, S. M., Alexandersen, S. & Jackson, T.(2005). The αVβ6 integrin receptor for Foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 86, 2769–2780.[CrossRef] [Google Scholar]
  13. Neff, S., Sá-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. & Baxt, B.(1998). Foot-and-mouth disease virus virulent for cattle utilizes the integrin αVβ3 as its receptor. J Virol 72, 3587–3594. [Google Scholar]
  14. Paananen, A., Ylipaasto, P., Rieder, E., Hovi, T., Galama, J. & Roivainen, M.(2003). Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 69, 529–537.[CrossRef] [Google Scholar]
  15. Roivainen, M., Hyypiä, T., Piirainen, L., Kalkkinen, N., Stanway, G. & Hovi, T.(1991). RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J Virol 65, 4735–4740. [Google Scholar]
  16. Roivainen, M., Piirainen, L., Hovi, T., Virtanen, I., Riikonen, T., Heino, J. & Hyypiä, T.(1994). Entry of coxsackievirus A9 into host cells: specific interactions with αVβ3 integrin, the vitronectin receptor. Virology 203, 357–365.[CrossRef] [Google Scholar]
  17. Roivainen, M., Piirainen, L. & Hovi, T.(1996). Efficient RGD-independent entry process of coxsackievirus A9. Arch Virol 141, 1909–1919.[CrossRef] [Google Scholar]
  18. Ruoslahti, E. & Pierschbacher, M. D.(1987). New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497.[CrossRef] [Google Scholar]
  19. Santti, J., Harvala, H., Kinnunen, L. & Hyypiä, T.(2000). Molecular epidemiology and evolution of coxsackievirus A9. J Gen Virol 81, 1361–1372. [Google Scholar]
  20. Triantafilou, K. & Triantafilou, M.(2003). Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle. Virology 317, 128–135.[CrossRef] [Google Scholar]
  21. Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y., Fernandez, N. & Stanway, G.(1999). Involvement of β2-microglobulin and integrin αVβ3 molecules in the coxsackievirus A9 infectious cycle. J Gen Virol 80, 2591–2600. [Google Scholar]
  22. Triantafilou, M., Triantafilou, K. & Wilson, K. M.(2000a). A 70 kDa MHC class I associated protein (MAP-70) identified as a receptor molecule for Coxsackievirus A9 cell attachment. Hum Immunol 61, 867–878.[CrossRef] [Google Scholar]
  23. Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y. & Fernandez, N.(2000b). High affinity interactions of Coxsackievirus A9 with integrin αVβ3 (CD51/61) require the CYDMKTTC sequence of β3, but do not require the RGD sequence of the CAV-9 VP1 protein. Hum Immunol 61, 453–459.[CrossRef] [Google Scholar]
  24. Triantafilou, K., Fradelizi, D., Wilson, K. & Triantafilou, M.(2002). GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76, 633–643.[CrossRef] [Google Scholar]
  25. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R.(2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348.[CrossRef] [Google Scholar]
  26. Weinacker, A., Chen, A., Agrez, M., Cone, R. I., Nishimura, S., Wayner, E., Pytela, R. & Sheppard, D.(1994). Role of the integrin αVβ6 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. J Biol Chem 269, 6940–6948. [Google Scholar]
  27. Williams, C. H., Kajander, T., Hyypiä, T., Jackson, T., Sheppard, D. & Stanway, G.(2004). Integrin αVβ6 is an RGD-dependent receptor for coxsackievirus A9. J Virol 78, 6967–6973.[CrossRef] [Google Scholar]
  28. Zimmermann, H., Eggers, H. J. & Nelsen-Salz, B.(1997). Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 233, 149–156.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.004838-0
Loading
/content/journal/jgv/10.1099/vir.0.004838-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error