1887

Abstract

Horizontally transmitted mosquito-borne viruses enter the midgut with a blood meal then disseminate to infect the salivary glands. En route to the salivary glands, these viruses encounter the plasma (haemolymph) and blood cells (haemocytes). Haemocytes respond to a variety of micro-organisms, but their role in virus replication and dissemination has not been described. To look for a potential haemocyte tropism for an arbovirus, a Sindbis virus was injected intrathoracically into four species of mosquito. Virus infects haemocytes as early as 6 h post injection (p.i.) and infection was evident in these cells for as long as 4 days p.i. More than 90 % of haemocytes were infected, most often the phagocytic granulocytes. Virus titres in the haemolymph increased from 24 h p.i. through 60 h p.i. Similar results were found when mosquitoes were injected with orally infectious Sindbis. These data prove that an arbovirus infects, and replicates in, haemocytes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005116-0
2009-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/292.html?itemId=/content/journal/jgv/10.1099/vir.0.005116-0&mimeType=html&fmt=ahah

References

  1. Bartholomay L. C., Fuchs J. F., Cheng L. L., Beck E. T., Vizioli J., Lowenberger C., Christensen B. M. 2004; Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti . Insect Mol Biol 13:125–132 [CrossRef]
    [Google Scholar]
  2. Black, W. C., IV, Bennett, K. E., Gorrochótegui-Escalante, N., Barillas-Mury, C. V., Fernández-Salas, I., de Lourdes Muñoz, M., Fárfan-Alé, J. A., Olson, K. E. & Beaty, B. J. 2002; Flavivirus susceptibility in Aedes aegypti . Arch Med Res 33:379–388 [CrossRef]
    [Google Scholar]
  3. Bowers D. F., Abell B. A., Brown D. T. 1995; Replication and tissue tropism of the alphavirus Sindbis in the mosquito Aedes albopictus . Virology 212:1–12 [CrossRef]
    [Google Scholar]
  4. Bowers D. F., Coleman C. G., Brown D. T. 2003; Sindbis virus-associated pathology in Aedes albopictus (Diptera: Culicidae). J Med Entomol 40:698–705 [CrossRef]
    [Google Scholar]
  5. Castillo J. C., Robertson A. E., Strand M. R. 2006; Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti . Insect Biochem Mol Biol 36:891–903 [CrossRef]
    [Google Scholar]
  6. Clarke T. E., Clem R. J. 2002; Lack of involvement of haemocytes in the establishment and spread of infection in Spodoptera frugiperda larvae infected with the baculovirus Autographa californica M nucleopolyhedrovirus by intrahaemocoelic injection. J Gen Virol 83:1565–1572
    [Google Scholar]
  7. Engelhard E. K., Kam-Morgan L. N., Washburn J. O., Volkman L. E. 1994; The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91:3224–3227 [CrossRef]
    [Google Scholar]
  8. Feng G., Yu Q., Hu C., Wang Y., Yuan G., Chen Q., Yang K., Pang Y. 2007; Apoptosis is induced in the haemolymph and fat body of Spodoptera exigua larvae upon oral inoculation with Spodoptera litura nucleopolyhedrovirus. J Gen Virol 88:2185–2193 [CrossRef]
    [Google Scholar]
  9. Foy B. D., Myles K. M., Pierro D. J., Sanchez-Vargas I., Uhlirova M., Jindra M., Beaty B. J., Olson K. E. 2004; Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 13:89–100 [CrossRef]
    [Google Scholar]
  10. Girard Y. A., Klingler K. A., Higgs S. 2004; West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus . Vector Borne Zoonotic Dis 4:109–122 [CrossRef]
    [Google Scholar]
  11. Hardy J. L., Houk E. J., Kramer L. D., Reeves W. C. 1983; Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262 [CrossRef]
    [Google Scholar]
  12. Hernandez-Martinez S., Lanz H., Rodriguez M. H., Gonzalez-Ceron L., Tsutsumi V. 2002; Cellular-mediated reactions to foreign organisms inoculated into the hemocoel of Anopheles albimanus (Diptera: Culicidae). J Med Entomol 39:61–69 [CrossRef]
    [Google Scholar]
  13. Hillyer J. F., Christensen B. M. 2002; Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti . Histochem Cell Biol 117:431–440 [CrossRef]
    [Google Scholar]
  14. Hillyer J. F., Schmidt S. L., Christensen B. M. 2003a; Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res 313:117–127 [CrossRef]
    [Google Scholar]
  15. Hillyer J. F., Schmidt S. L., Christensen B. M. 2003b; Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti . J Parasitol 89:62–69 [CrossRef]
    [Google Scholar]
  16. Hillyer J. F., Schmidt S. L., Christensen B. M. 2004; The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity. Microbes Infect 6:448–459 [CrossRef]
    [Google Scholar]
  17. Infanger L. C., Rocheleau T. A., Bartholomay L. C., Johnson J. K., Fuchs J., Higgs S., Chen C. C., Christensen B. M. 2004; The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes. Insect Biochem Mol Biol 34:1329–1338 [CrossRef]
    [Google Scholar]
  18. Keddie B. A., Aponte G. W., Volkman L. E. 1989; The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 243:1728–1730 [CrossRef]
    [Google Scholar]
  19. Lai S. C., Chen C. C., Hou R. F. 2001; Electron microscopic observations on wound-healing in larvae of the mosquito Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 38:836–843 [CrossRef]
    [Google Scholar]
  20. Lowenberger C. 2001; Innate immune response of Aedes aegypti . Insect Biochem Mol Biol 31:219–229 [CrossRef]
    [Google Scholar]
  21. Myles K. M., Pierro D. J., Olson K. E. 2003; Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti . J Virol 77:8872–8881 [CrossRef]
    [Google Scholar]
  22. Olson K. E., Higgs S., Gaines P. J., Powers A. M., Davis B. S., Kamrud K. I., Carlson J. O., Blair C. D., Beaty B. J. 1996; Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 272:884–886 [CrossRef]
    [Google Scholar]
  23. Olson K. E., Myles K. M., Seabaugh R. C., Higgs S., Carlson J. O., Beaty B. J. 2000; Development of a Sindbis virus expression system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Mol Biol 9:57–65 [CrossRef]
    [Google Scholar]
  24. Pierro D. J., Myles K. M., Foy B. D., Beaty B. J., Olson K. E. 2003; Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti . Insect Mol Biol 12:107–116 [CrossRef]
    [Google Scholar]
  25. Pierro D. J., Powers E. L., Olson K. E. 2007; Genetic determinants of Sindbis virus strain TR339 affecting midgut infection in the mosquito Aedes aegypti . J Gen Virol 88:1545–1554 [CrossRef]
    [Google Scholar]
  26. Romoser W. S., Wasieloski L. P. Jr, Pushko P., Kondig J. P., Lerdthusnee K., Neira M., Ludwig G. V. 2004; Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 41:467–475 [CrossRef]
    [Google Scholar]
  27. Salazar M. I., Richardson J. H., Sanchez-Vargas I., Olson K. E., Beaty B. J. 2007; Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:9 [CrossRef]
    [Google Scholar]
  28. Shiao S. H., Higgs S., Adelman Z., Christensen B. M., Liu S. H., Chen C. C. 2001; Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus . Insect Mol Biol 10:315–321 [CrossRef]
    [Google Scholar]
  29. Sriurairatna S., Bhamarapravati N. 1977; Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg 26:1199–1205
    [Google Scholar]
  30. Tamang D., Tseng S. M., Huang C. Y., Tsao I. Y., Chou S. Z., Higgs S., Christensen B. M., Chen C. C. 2004; The use of a double subgenomic Sindbis virus expression system to study mosquito gene function: effects of antisense nucleotide number and duration of viral infection on gene silencing efficiency. Insect Mol Biol 13:595–602 [CrossRef]
    [Google Scholar]
  31. Trudeau D., Washburn J. O., Volkman L. E. 2001; Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea . J Virol 75:996–1003 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005116-0
Loading
/content/journal/jgv/10.1099/vir.0.005116-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error