1887

Abstract

The interferon (IFN) system is a major effector of the innate immunity that allows time for the subsequent establishment of an adaptive immune response against a wide-range of pathogens. Their diverse biological actions are thought to be mediated by the products of specific but usually overlapping sets of cellular genes induced in the target cells. Ubiquitin ligase members of the tripartite motif (TRIM) protein family have emerged as IFN-induced proteins involved in both innate and adaptive immunity. In this report, we provide evidence that TRIM22 is a functional E3 ubiquitin ligase that is also ubiquitinated itself. We demonstrate that TRIM22 expression leads to a viral protection of HeLa cells against encephalomyocarditis virus infections. This effect is dependent upon its E3 ubiquitinating activity, since no antiviral effect was observed in cells expressing a TRIM22-deletion mutant defective in ubiquitinating activity. Consistent with this, TRIM22 interacts with the viral 3C protease (3C) and mediates its ubiquitination. Altogether, our findings demonstrate that TRIM22 E3 ubiquitin ligase activity represents a new antiviral pathway induced by IFN against picornaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006288-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/536.html?itemId=/content/journal/jgv/10.1099/vir.0.006288-0&mimeType=html&fmt=ahah

References

  1. Barr S. D., Smiley J. R., Bushman F. D. 2008; The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog 4:e1000007 [CrossRef]
    [Google Scholar]
  2. Barral P. M., Morrison J. M., Drahos J., Gupta P., Sarkar D., Fisher P. B., Racaniello V. R. 2007; MDA-5 is cleaved in poliovirus-infected cells. J Virol 81:3677–3684 [CrossRef]
    [Google Scholar]
  3. Ben-Neriah Y. 2002; Regulatory functions of ubiquitination in the immune system. Nat Immunol 3:20–26 [CrossRef]
    [Google Scholar]
  4. Blondel D., Petitjean A. M., Dezelee S., Wyers F. 1988; Vesicular stomatitis virus in Drosophila melanogaster cells: regulation of viral transcription and replication. J Virol 62:277–284
    [Google Scholar]
  5. Borrego B., Garcia-Ranea J. A., Douglas A., Brocchi E. 2002; Mapping of linear epitopes on the capsid proteins of swine vesicular disease virus using monoclonal antibodies. J Gen Virol 83:1387–1395
    [Google Scholar]
  6. Bouazzaoui A., Kreutz M., Eisert V., Dinauer N., Heinzelmann A., Hallenberger S., Strayle J., Walker R., Rubsamen-Waigmann H. other authors 2006; Stimulated trans-acting factor of 50 kDa (Staf50) inhibits HIV-1 replication in human monocyte-derived macrophages. Virology 356:79–94 [CrossRef]
    [Google Scholar]
  7. Der S. D., Zhou A., Williams B. R., Silverman R. H. 1998; Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628 [CrossRef]
    [Google Scholar]
  8. Duan Z., Gao B., Xu W., Xiong S. 2008; Identification of TRIM22 as a RING finger E3 ubiquitin ligase. Biochem Biophys Res Commun 374:502–506 [CrossRef]
    [Google Scholar]
  9. Ehrenfeld E. 1982; Poliovirus-induced inhibition of host-cell protein synthesis. Cell 28:435–436 [CrossRef]
    [Google Scholar]
  10. Gack M. U., Shin Y. C., Joo C. H., Urano T., Liang C., Sun L., Takeuchi O., Akira S., Chen Z. other authors 2007; TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–920 [CrossRef]
    [Google Scholar]
  11. Glickman M. H., Ciechanover A. 2002; The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428
    [Google Scholar]
  12. Gongora C., Tissot C., Cerdan C., Mechti N. 2000; The interferon-inducible Staf50 gene is downregulated during T cell costimulation by CD2 and CD28. J Interferon Cytokine Res 20:955–961 [CrossRef]
    [Google Scholar]
  13. Hall D. J., Palmenberg A. C. 1996; Mengo virus 3C proteinase: recombinant expression, intergenus substrate cleavage and localization in vivo. Virus Genes 13:99–110 [CrossRef]
    [Google Scholar]
  14. Hilton D. J., Richardson R. T., Alexander W. S., Viney E. M., Willson T. A., Sprigg N. S., Starr R., Nicholson S. E., Metcalf D., Nicola N. A. 1998; Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95:114–119 [CrossRef]
    [Google Scholar]
  15. Kallijarvi J., Lahtinen U., Hamalainen R., Lipsanen-Nyman M., Palvimo J. J., Lehesjoki A. E. 2005; TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res 308:146–155 [CrossRef]
    [Google Scholar]
  16. Kong H. J., Anderson D. E., Lee C. H., Jang M. K., Tamura T., Tailor P., Cho H. K., Cheong J., Xiong H. other authors 2007; Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 179:26–30 [CrossRef]
    [Google Scholar]
  17. Kudryashova E., Kudryashov D., Kramerova I., Spencer M. J. 2005; Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 354:413–424 [CrossRef]
    [Google Scholar]
  18. Kuyumcu-Martinez N. M., Van Eden M. E., Younan P., Lloyd R. E. 2004; Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 24:1779–1790 [CrossRef]
    [Google Scholar]
  19. Lawson T. G., Gronros D. L., Werner J. A., Wey A. C., DiGeorge A. M., Lockhart J. L., Wilson J. W., Wintrode P. L. 1994; The encephalomyocarditis virus 3C protease is a substrate for the ubiquitin-mediated proteolytic system. J Biol Chem 269:28429–28435
    [Google Scholar]
  20. Lawson T. G., Gronros D. L., Evans P. E., Bastien M. C., Michalewich K. M., Clark J. K., Edmonds J. H., Graber K. H., Werner J. A. other authors 1999; Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. J Biol Chem 274:9904–9980
    [Google Scholar]
  21. Lawson T. G., Sweep M. E., Schlax P. E., Bohnsack R. N., Haas A. L. 2001; Kinetic analysis of the conjugation of ubiquitin to picornavirus 3C proteases catalyzed by the mammalian ubiquitin-protein ligase E3 α . J Biol Chem 276:39629–39637 [CrossRef]
    [Google Scholar]
  22. Liu Y. C. 2004; Ubiquitin ligases and the immune response. Annu Rev Immunol 22:81–127 [CrossRef]
    [Google Scholar]
  23. Losick V. P., Schlax P. E., Emmons R. A., Lawson T. G. 2003; Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system. Virology 309:306–319 [CrossRef]
    [Google Scholar]
  24. Meroni G., Diez-Roux G. 2005; TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27:1147–1157 [CrossRef]
    [Google Scholar]
  25. Milhaud P. G., Silhol M., Faure T., Milhaud X. 1983; Numerical tables for the direct estimation of virus titres by the maximum-likelihood method. Ann Virol E134:405–416
    [Google Scholar]
  26. Neznanov N., Chumakov K. M., Neznanova L., Almasan A., Banerjee A. K., Gudkov A. V. 2005; Proteolytic cleavage of the p65-RelA subunit of NF- κ B during poliovirus infection. J Biol Chem 280:24153–24158 [CrossRef]
    [Google Scholar]
  27. Nisole S., Stoye J. P., Saib A. 2005; TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799–808 [CrossRef]
    [Google Scholar]
  28. Obad S., Brunnstrom H., Vallon-Christersson J., Borg A., Drott K., Gullberg U. 2004; Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 23:4050–4059 [CrossRef]
    [Google Scholar]
  29. Obad S., Olofsson T., Mechti N., Gullberg U., Drott K. 2007a; Expression of the IFN-inducible p53-target gene TRIM22 is down-regulated during erythroid differentiation of human bone marrow. Leuk Res 31:995–1001 [CrossRef]
    [Google Scholar]
  30. Obad S., Olofsson T., Mechti N., Gullberg U., Drott K. 2007b; Regulation of the interferon-inducible p53 target gene TRIM22 (Staf50) in human T lymphocyte activation. J Interferon Cytokine Res 27:857–864 [CrossRef]
    [Google Scholar]
  31. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol 44:603–623 [CrossRef]
    [Google Scholar]
  32. Palmenberg A. C., Pallansch M. A., Rueckert R. R. 1979; Protease required for processing picornaviral coat protein resides in the viral replicase gene. J Virol 32:770–778
    [Google Scholar]
  33. Palmenberg A. C., Kirby E. M., Janda M. R., Drake N. L., Duke G. M., Potratz K. F., Collett M. S. 1984; The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Res 12:2969–2985 [CrossRef]
    [Google Scholar]
  34. Ponting C., Schultz J., Bork P. 1997; SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem Sci 22:193–194 [CrossRef]
    [Google Scholar]
  35. Samuel C. E. 2001; Antiviral actions of interferons. Clin Microbiol Rev 14:778–809 [CrossRef]
    [Google Scholar]
  36. Schlax P. E., Zhang J., Lewis E., Planchart A., Lawson T. G. 2007; Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo . Virology 360:350–363 [CrossRef]
    [Google Scholar]
  37. Shen Y., Igo M., Yalamanchili P., Berk A. J., Dasgupta A. 1996; DNA binding domain and subunit interactions of transcription factor IIIC revealed by dissection with poliovirus 3C protease. Mol Cell Biol 16:4163–4171
    [Google Scholar]
  38. Sigismund S., Polo S., Di Fiore P. P. 2004; Signaling through monoubiquitination. Curr Top Microbiol Immunol 286:149–185
    [Google Scholar]
  39. Tissot C., Mechti N. 1995; Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem 270:14891–14898 [CrossRef]
    [Google Scholar]
  40. van der Horst A., de Vries-Smits A. M., Brenkman A. B., van Triest M. H., van den Broek N., Colland F., Maurice M. M., Burgering B. M. 2006; FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8:1064–1073 [CrossRef]
    [Google Scholar]
  41. Whitton J. L., Cornell C. T., Feuer R. 2005; Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3:765–776 [CrossRef]
    [Google Scholar]
  42. Woelk T., Sigismund S., Penengo L., Polo S. 2007; The ubiquitination code: a signalling problem. Cell Div 2:11 [CrossRef]
    [Google Scholar]
  43. Yalamanchili P., Harris K., Wimmer E., Dasgupta A. 1996; Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J Virol 70:2922–2929
    [Google Scholar]
  44. Yalamanchili P., Datta U., Dasgupta A. 1997; Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 71:1220–1226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006288-0
Loading
/content/journal/jgv/10.1099/vir.0.006288-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error