1887

Abstract

Introns from the Epstein–Barr virus (EBV) BART RNAs produce up to 20 micro RNAs (miRNAs) but the spliced exons of the BART RNAs have also been investigated as possible mRNAs, with the potential to express the RPMS1 and A73 proteins. Recombinant RPMS1 and A73 proteins were expressed in and used to make new monoclonal antibodies that reacted specifically with artificially expressed RPMS1 and A73. These antibodies did not detect endogenous expression of A73 and RPMS1 proteins in a panel of EBV-infected cell lines representing the different known types of EBV infection. BART RNA could not be detected on Northern blots of cytoplasmic poly(A) RNA from the C666.1 NPC cell line and BART RNA was found to be mainly in the nucleus of C666.1 cells, arguing against an mRNA role for BART RNAs. In contrast, some early lytic cycle EBV mRNAs were found to be expressed in C666.1 cells. Artificially expressed A73 protein was known to be able to bind to the cellular RACK1 protein and has now also been shown to be able to regulate calcium flux, presumably via RACK1. Overall, the results support the conclusion that the miRNAs are functionally important products of BART transcription in the cell lines studied because the A73 and RPMS1 proteins could not be detected in natural EBV infections. However, the possibility remains that A73 and RPMS1 might be expressed in some situations because of the clear potential relevance of their biochemical functions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006551-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/307.html?itemId=/content/journal/jgv/10.1099/vir.0.006551-0&mimeType=html&fmt=ahah

References

  1. Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jaker C., Hock J., Meister G., Grasser F. A. 2008; Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36:666–675
    [Google Scholar]
  2. Busson P., Ganem G., Flores P., Mugneret F., Clausse B., Caillou B., Braham K., Wakasugi H., Lipinski M., Tursz T. 1988; Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. Int J Cancer 42:599–606 [CrossRef]
    [Google Scholar]
  3. Cabras G., Decaussin G., Zeng Y., Djennaoui D., Melouli H., Broully P., Bouguermouh A. M., Ooka T. 2005; Epstein–Barr virus encoded BALF1 gene is transcribed in Burkitt's lymphoma cell lines and in nasopharyngeal carcinoma's biopsies. J Clin Virol 34:26–34 [CrossRef]
    [Google Scholar]
  4. Cai X., Schafer A., Lu S., Bilello J. P., Desrosiers R. C., Edwards R., Raab-Traub N., Cullen B. R. 2006; Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23 [CrossRef]
    [Google Scholar]
  5. Chang B. Y., Conroy K. B., Machleder E. M., Cartwright C. A. 1998; RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 18:3245–3256
    [Google Scholar]
  6. Chen H., Smith P., Ambinder R. F., Hayward S. D. 1999; Expression of Epstein–Barr virus Bam HI-A rightward transcripts in latently infected B cells from peripheral blood. Blood 93:3026–3032
    [Google Scholar]
  7. Cheung S. T., Huang D. P., Hui A. B., Lo K. W., Ko C. W., Tsang Y. S., Wong N., Whitney B. M., Lee J. C. 1999; Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein–Barr virus. Int J Cancer 83:121–126 [CrossRef]
    [Google Scholar]
  8. Chiang A. K., Tao Q., Srivastava G., Ho F. C. 1996; Nasal NK- and T-cell lymphomas share the same type of Epstein–Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int J Cancer 68:285–290 [CrossRef]
    [Google Scholar]
  9. Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A. B., Young L. S. 1993; Epstein–Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177:339–349 [CrossRef]
    [Google Scholar]
  10. de Jesus O., Smith P. R., Spender L. C., Elgueta Karstegl C., Niller H. H., Huang D., Farrell P. J. 2003; Updated Epstein–Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84:1443–1450 [CrossRef]
    [Google Scholar]
  11. Dolan A., Addison C., Gatherer D., Davison A. J., McGeoch D. J. 2006; The genome of Epstein–Barr virus type 2 strain AG876. Virology 350:164–170 [CrossRef]
    [Google Scholar]
  12. Edwards R. H., Marquitz A. R., Raab-Traub N. 2008; Epstein–Barr virus BART miRNAs are produced from a large intron prior to splicing. J Virol 82:9094–9106 [CrossRef]
    [Google Scholar]
  13. Feng P., Ren E. C., Liu D., Chan S. H., Hu H. 2000; Expression of Epstein–Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 81:2417–2423
    [Google Scholar]
  14. Gardella T., Medveczky P., Sairenji T., Mulder C. 1984; Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J Virol 50:248–254
    [Google Scholar]
  15. Gilligan K., Sato H., Rajadurai P., Busson P., Young L., Rickinson A., Tursz T., Raab-Traub N. 1990; Novel transcription from the Epstein–Barr virus terminal Eco RI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol 64:4948–4956
    [Google Scholar]
  16. Gilligan K. J., Rajadurai P., Lin J. C., Busson P., Abdel-Hamid M., Prasad U., Tursz T., Raab-Traub N. 1991; Expression of the Epstein–Barr virus Bam HI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol 65:6252–6259
    [Google Scholar]
  17. Griffiths-Jones S., Grocock R. J., van Dongen S., Bateman A., Enright A. J. 2006; miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144 [CrossRef]
    [Google Scholar]
  18. Grundhoff A., Sullivan C. S., Ganem D. 2006; A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750 [CrossRef]
    [Google Scholar]
  19. Hitt M. M., Allday M. J., Hara T., Karran L., Jones M. D., Busson P., Tursz T., Ernberg I., Griffin B. E. 1989; EBV gene expression in an NPC-related tumour. EMBO J 8:2639–2651
    [Google Scholar]
  20. Kienzle N., Sculley T. B., Poulsen L., Buck M., Cross S., Raab-Traub N., Khanna R. 1998; Identification of a cytotoxic T-lymphocyte response to the novel BARF0 protein of Epstein–Barr virus: a critical role for antigen expression. J Virol 72:6614–6620
    [Google Scholar]
  21. Kienzle N., Buck M., Greco S., Krauer K., Sculley T. 1999; Epstein–Barr virus-encoded RK-BARF0 protein expression. J Virol 73:8902–8906
    [Google Scholar]
  22. Li A., Zhang X. S., Jiang J. H., Wang H. H., Liu X. Q., Pan Z. G., Zeng Y. X. 2005; Transcriptional expression of RPMS1 in nasopharyngeal carcinoma and its oncogenic potential. Cell Cycle 4:304–309
    [Google Scholar]
  23. Liliental J., Chang D. D. 1998; Rack1, a receptor for activated protein kinase C, interacts with integrin β subunit. J Biol Chem 273:2379–2383 [CrossRef]
    [Google Scholar]
  24. Lo A. K., To K. F., Lo K. W., Lung R. W., Hui J. W., Liao G., Hayward S. D. 2007; Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 104:16164–16169 [CrossRef]
    [Google Scholar]
  25. Martel-Renoir D., Grunewald V., Touitou R., Schwaab G., Joab I. 1995; Qualitative analysis of the expression of Epstein–Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol 76:1401–1408 [CrossRef]
    [Google Scholar]
  26. Masy E., Adriaenssens E., Montpellier C., Crepieux P., Mougel A., Quatannens B., Goormachtigh G., Faumont N., Meggetto F. other authors 2002; Human monocytic cell lines transformed in vitro by Epstein–Barr virus display a type II latency and LMP-1-dependent proliferation. J Virol 76:6460–6472 [CrossRef]
    [Google Scholar]
  27. Nishiyama M., Hong K., Mikoshiba K., Poo M. M., Kato K. 2000; Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588 [CrossRef]
    [Google Scholar]
  28. Patterson R. L., van Rossum D. B., Barrow R. K., Snyder S. H. 2004; RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A 101:2328–2332 [CrossRef]
    [Google Scholar]
  29. Pfeffer S., Zavolan M., Grasser F. A., Chien M., Russo J. J., Ju J., John B., Enright A. J., Marks D. other authors 2004; Identification of virus-encoded microRNAs. Science 304:734–736 [CrossRef]
    [Google Scholar]
  30. Raab-Traub N., Rajadurai P., Flynn K., Lanier A. P. 1991; Epstein–Barr virus infection in carcinoma of the salivary gland. J Virol 65:7032–7036
    [Google Scholar]
  31. Rickinson A. B., Kieff E. 2007; Epstein–Barr virus. In Fields Virology , 5th edn. pp 2655–2700Edited by Knipe D., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  32. Rivailler P., Cho Y. G., Wang F. 2002a; Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068 [CrossRef]
    [Google Scholar]
  33. Rivailler P., Jiang H., Cho Y. G., Quink C., Wang F. 2002b; Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J Virol 76:421–426 [CrossRef]
    [Google Scholar]
  34. Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D. 1994; Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G proteins. Proc Natl Acad Sci U S A 91:839–843 [published erratum appears in Proc Natl Acad Sci U S A 1995 Feb 28; 92(5): 2016] [CrossRef]
    [Google Scholar]
  35. Sadler R. H., Raab-Traub N. 1995; Structural analyses of the Epstein–Barr virus Bam HI A transcripts. J Virol 69:1132–1141
    [Google Scholar]
  36. Smith P. R., de Jesus O., Turner D., Hollyoake M., Elgueta Karstegl C., Griffin B. E., Karran L., Wang Y., Hayward S. D., Farrell P. J. 2000; Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J Virol 74:3082–3092 [CrossRef]
    [Google Scholar]
  37. Spender L. C., Lucchesi W., Bodelon G., Bilancio A., Karstegl C. E., Asano T., Dittrich-Breiholz O., Kracht M., Vanhaesebroeck B., Farrell P. J. 2006; Cell target genes of Epstein–Barr virus transcription factor EBNA-2: induction of the p55 α regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol 87:2859–2867 [CrossRef]
    [Google Scholar]
  38. Sugawara Y., Mizugaki Y., Uchida T., Torii T., Imai S., Makuuchi M., Takada K. 1999; Detection of Epstein–Barr virus (EBV) in hepatocellular carcinoma tissue: a novel EBV latency characterized by the absence of EBV-encoded small RNA expression. Virology 256:196–202 [CrossRef]
    [Google Scholar]
  39. Sugiura M., Imai S., Tokunaga M., Koizumi S., Uchizawa M., Okamoto K., Osato T. 1996; Transcriptional analysis of Epstein–Barr virus gene expression in EBV-positive gastric carcinoma: unique viral latency in the tumour cells. Br J Cancer 74:625–631 [CrossRef]
    [Google Scholar]
  40. Tao Q., Robertson K. D., Manns A., Hildesheim A., Ambinder R. F. 1998; Epstein–Barr virus (EBV) in endemic Burkitt's lymphoma: molecular analysis of primary tumor tissue. Blood 91:1373–1381
    [Google Scholar]
  41. van Gorp J., Brink A., Oudejans J. J., van den Brule A. J., van den Tweel J. G., Jiwa N. M., de Bruin P. C., Meijer C. J. 1996; Expression of Epstein–Barr virus encoded latent genes in nasal T cell lymphomas. J Clin Pathol 49:72–76 [CrossRef]
    [Google Scholar]
  42. Webster-Cyriaque J., Raab-Traub N. 1998; Transcription of Epstein–Barr virus latent cycle genes in oral hairy leukoplakia. Virology 248:53–65 [CrossRef]
    [Google Scholar]
  43. Zeng M. S., Li D. J., Liu Q. L., Song L. B., Li M. Z., Zhang R. H., Yu X. J., Wang H. M., Ernberg I., Zeng Y. X. 2005; Genomic sequence analysis of Epstein–Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol 79:15323–15330 [CrossRef]
    [Google Scholar]
  44. Zhang J., Chen H., Weinmaster G., Hayward S. D. 2001; Epstein–Barr virus Bam HI-a rightward transcript-encoded RPMS protein interacts with the CBF1-associated corepressor CIR to negatively regulate the activity of EBNA2 and NotchIC. J Virol 75:2946–2956 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006551-0
Loading
/content/journal/jgv/10.1099/vir.0.006551-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error