1887

Abstract

and salivary gland hypertrophy viruses (GpSGHV and MdSGHV) replicate in the nucleus of salivary gland cells causing distinct tissue hypertrophy and reduction of host fertility. They share general characteristics with the non-occluded insect nudiviruses, such as being insect-pathogenic, having enveloped, rod-shaped virions, and large circular double-stranded DNA genomes. MdSGHV measures 65×550 nm and contains a 124 279 bp genome (∼44 mol% G+C content) that codes for 108 putative open reading frames (ORFs). GpSGHV, measuring 50×1000 nm, contains a 190 032 bp genome (28 mol% G+C content) with 160 putative ORFs. Comparative genomic analysis demonstrates that 37 MdSGHV ORFs have homology to 42 GpSGHV ORFs, as some MdSGHV ORFs have homology to two different GpSGHV ORFs. Nine genes with known functions (, , , , , , , and ), a homologue of the conserved baculovirus gene and at least 13 virion proteins are present in both SGHVs. The amino acid identity ranged from 19 to 39 % among ORFs. An (A/T/G)TAAG motif, similar to the baculovirus late promoter motif, was enriched 100 bp upstream of the ORF transcription initiation sites of both viruses. Six and seven putative microRNA sequences were found in MdSGHV and GpSGHV genomes, respectively. There was genome. Collinearity between the two SGHVs, but not between the SGHVs and the nudiviruses. Phylogenetic analysis of conserved genes clustered both SGHVs in a single clade separated from the nudiviruses and baculoviruses. Although MdSGHV and GpSGHV are different viruses, their pathology, host range and genome composition indicate that they are related.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006783-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/334.html?itemId=/content/journal/jgv/10.1099/vir.0.006783-0&mimeType=html&fmt=ahah

References

  1. Abd-Alla A., Bossin H., Cousserans F., Parker A., Bergoin M., Robinson A. 2007; Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139:143–149 [CrossRef]
    [Google Scholar]
  2. Abd-Alla A. M. M., Cousserans F., Parker A. G., Jehle J. A., Parker N. J., Vlak J. M., Robinson A. S., Bergoin M. 2008; Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) reveals a novel large double-stranded circular DNA virus. J Virol 82:4595–4611 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  5. Amargier A., Lyon J. P., Vago C., Meynadier G., Veyrunes J. C. 1979; Mise en evidence et purification d'un virus dans la proliferation monstreuse glandulaire d'insectes. Etude sur Merodon equestris (Diptera, Syrphidae). Note. C R Seances Acad Sci D 289:481–484 (in French
    [Google Scholar]
  6. Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jäker C., Höck J., Meister G., Grässer F. A. 2008; Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36:666–675
    [Google Scholar]
  7. Blissard G. W., Rohrmann G. F. 1990; Baculovirus diversity and molecular biology. Annu Rev Entomol 35:127–155 [CrossRef]
    [Google Scholar]
  8. Cheng C.-H., Liu S.-M., Chow T.-Y., Hsiao Y.-Y., Wang D.-P., Huang J.-J., Chen H.-H. 2002; Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae . J Virol 76:9024–9034 [CrossRef]
    [Google Scholar]
  9. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C. other authors 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011 [CrossRef]
    [Google Scholar]
  10. Coler R. R., Boucias D. G., Frank J. H., Maruniak J. E., Garcia-Canedo A., Pendland J. C. 1993; Characterization and description of a virus causing salivary gland hyperplasia in the housefly, Musca domestica . Med Vet Entomol 7:275–282 [CrossRef]
    [Google Scholar]
  11. Ellis D. S., Maudlin I. 1987; Salivary gland hyperplasia in wild caught tsetse from Zimbabwe. Entomol Exp Appl 45:167–173 [CrossRef]
    [Google Scholar]
  12. Garcia-Maruniak A., Maruniak J. E., Farmerie W., Boucias D. G. 2008; Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica , MdSGHV. Virology 377:184–196 [CrossRef]
    [Google Scholar]
  13. Geden C. J., Lietze V.-U., Boucias D. 2008; Seasonal prevalence and transmission of salivary gland hypertrophy virus of house flies (Diptera: Muscidae). J Med Entomol 45:42–51 [CrossRef]
    [Google Scholar]
  14. Gouteux J. P. 1987; Prevalence of enlarged salivary glands in Glossina palpalis , G. pallicera, and G. nigrofusca (Diptera: Glossinidae) from the Vavoua area, Ivory Coast. J Med Entomol 24:268 [CrossRef]
    [Google Scholar]
  15. Grad Y., Aach J., Hayes G. D., Reinhart B. J., Church G. M., Ruvkun G., Kim J. 2003; Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263 [CrossRef]
    [Google Scholar]
  16. Gupta A., Gartner J. J., Sethupathy P., Hatzigeorgiou A. G., Fraser N. W. 2006; Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82–85
    [Google Scholar]
  17. Hofacker I. L. 2003; Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431 [CrossRef]
    [Google Scholar]
  18. Hu Z. H., Arif B. M., Jin F., Martens J. W. M., Chen X. W., Sun J. S., Zuidema D., Goldbach R. W., Vlak J. M. 1998; Distinct gene arrangement in the Buzara suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 79:2841–2851
    [Google Scholar]
  19. Hussain M., Taft R. J., Asgari S. 2008; An insect virus-encoded microRNA regulates viral replication. J Virol 82:9164–9170 [CrossRef]
    [Google Scholar]
  20. Jaenson T. G. T. 1978; Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes . Trans R Soc Trop Med Hyg 72:234–238 [CrossRef]
    [Google Scholar]
  21. Jura W. G. Z. O., Odhiambo T. R., Otieno L. H., Tabu N. O. 1988; Gonadal lesions in virus-infected male and female tsetse, Glossina pallidipes (Diptera: Glossinidae). J Invertebr Pathol 52:1–8 [CrossRef]
    [Google Scholar]
  22. Jura W. G. Z. O., Otieno L. H., Chimtawi M. M. B. 1989; Ultrastructural evidence for trans-ovum transmission of the DNA virus of tsetse Glossina pallidipes (Diptera: Glossinidae). Curr Microbiol 18:1–4 [CrossRef]
    [Google Scholar]
  23. Jura W. G. Z. O., Zdarek J., Otieno L. H. 1993; A simple method for artificial infection of tsetse, Glossina morsitans morsitans larvae with the DNA virus of G. pallidipes . Insect Sci Appl 14:383–387
    [Google Scholar]
  24. Kikhno I., Gutierrez Z., Croizier L., Croizier G., Lopez Ferber M. 2002; Characterization of pif , a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J Gen Virol 83:3013–3022
    [Google Scholar]
  25. Kim V. N., Nam J. W. 2006; Genomics of microRNA. Trends Genet 22:165–173 [CrossRef]
    [Google Scholar]
  26. Kokwaro E. D., Nyindo M., Chimtawi M. 1990; Ultrastructural changes in salivary glands of tsetse, Glossina morsitans morsitans , infected with virus and rickettsia-like organisms. J Invertebr Pathol 56:337–346 [CrossRef]
    [Google Scholar]
  27. Kuzio J., Jaques R., Faulkner P. 1989; Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763 [CrossRef]
    [Google Scholar]
  28. Lauzon H. A., Garcia-Maruniak A., Zanotto P. M., Clemente J. C., Herniou E. A., Lucarotti C. J., Arif B. M., Maruniak J. E. 2006; Genomic comparison of Neodiprion sertifer and Neodiprion lecontei nucleopolyhedroviruses and identification of potential hymenopteran baculovirus-specific open reading frames. J Gen Virol 87:1477–1489 [CrossRef]
    [Google Scholar]
  29. Lietze V.-U., Geden C. J., Blackburn P., Boucias D. G. 2007; Effects of salivary gland hypertrophy virus on the reproductive behavior of the house fly, Musca domestica . Appl Environ Microbiol 73:6811–6818 [CrossRef]
    [Google Scholar]
  30. Marks H., Ren X. Y., Sandbrink H., van Hulten M. C., Vlak J. M. 2006; In silico identification of putative promoter motifs of White Spot Syndrome Virus. BMC Bioinformatics 7:309 [CrossRef]
    [Google Scholar]
  31. Minter-Goedbloed E., Minter D. M. 1989; Salivary gland hyperplasia and trypanosome infection of Glossina in two areas of Kenya. Trans R Soc Trop Med Hyg 83:640–641 [CrossRef]
    [Google Scholar]
  32. Odindo M. O. 1982; Incidence of salivary gland hypertrophy in field populations of the tsetse Glossina pallidipes on the south Kenyan coast. Insect Sci Appl 3:59–64
    [Google Scholar]
  33. Odindo M. O., Sabwa D. M., Amutalla P. A., Otieno W. A. 1981; Preliminary tests on the transmission of virus-like particles to the tsetse Glossina pallidipes . Insect Sci Appl 2:219–221
    [Google Scholar]
  34. Ohkawa T., Washburn J. O., Sitapara R., Sid E., Volkman L. E. 2005; Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115 . J Virol 79:15258–15264 [CrossRef]
    [Google Scholar]
  35. Oliveira J. V. de C., Wolff J. L. C., Garcia-Maruniak A., Ribeiro B. M., de Castro M. E. B., de Souza M. L., Moscardi F., Maruniak J. E., Zanotto P. M. de A. 2006; Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J Gen Virol 87:3233–3250 [CrossRef]
    [Google Scholar]
  36. Otieno L. H., Kokwaro E. D., Chimtawi M., Onyango P. 1980; Prevalence of enlarged salivary glands in wild populations of Glossina pallidipes in Kenya, with a note on the ultrastructure of the affected organ. J Invertebr Pathol 36:113–118 [CrossRef]
    [Google Scholar]
  37. Pearson M. N., Rohrmann G. F. 1998; Characterization of a baculovirus-encoded ATP-dependent DNA ligase. J Virol 72:9142–9149
    [Google Scholar]
  38. Pijlman G. P., Pruijssers A. J., Vlak J. M. 2003; Identification of pif-2 , a third conserved baculovirus gene required for per os infection of insects. J Gen Virol 84:2041–2049 [CrossRef]
    [Google Scholar]
  39. Ritchie W., Legendre M., Gautheret D. 2007; RNA stem-loops: to be or not to be cleaved by RNAse III. RNA 13:457–462 [CrossRef]
    [Google Scholar]
  40. Sang R. C., Jura W. G. Z. O., Otieno L. H., Ogaja P. 1996; Ultrastructural changes in the milk gland of tsetse Glossina morsitans centralis (Diptera; Glissinidae) female infected by a DNA virus. J Invertebr Pathol 68:253–259 [CrossRef]
    [Google Scholar]
  41. Sang R. C., Jura W. G. Z. O., Otieno L. H., Mwangi R. W. 1998; The effects of a DNA virus infection on the reproductive potential of female tsetse flies, Glossina morsitans centralis and Glossina morsitans morsitans (Diptera: Glossinidae). Mem Inst Oswaldo Cruz 93:861–864 [CrossRef]
    [Google Scholar]
  42. Sang R. C., Jura W. G. Z. O., Otieno L. H., Mwangi R. W., Ogaja P. 1999; The effects of a tsetse DNA virus infection on the functions of the male accessory reproductive gland in the host fly Glossina morsitans centralis (Diptera; Glossinidae). Curr Microbiol 38:349–354 [CrossRef]
    [Google Scholar]
  43. Shaw M. K., Moloo S. K. 1993; Virus-like particles in Rickettsia within the midgut epithelial cells of Glossina morsitans centralis and Glossina brevipalpis . J Invertebr Pathol 61:162–166 [CrossRef]
    [Google Scholar]
  44. Slack J., Arif B. M. 2007; The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69:99–165
    [Google Scholar]
  45. Song J., Wang R., Deng F., Wang H., Hu Z. H. 2008; Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol 89:2331–2338 [CrossRef]
    [Google Scholar]
  46. Stern-Ginossar N., Elefant N., Zimmermann A., Wolf D. G., Saleh N., Biton M., Horwitz E., Prokocimer Z., Prichard M. other authors 2007; Host immune system gene targeting by a viral miRNA. Science 317:376–381 [CrossRef]
    [Google Scholar]
  47. Sullivan C. S., Grundhoff A. T., Tevethia S., Pipas J. M., Ganem D. 2005; SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686 [CrossRef]
    [Google Scholar]
  48. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  49. van Hulten M. C. W., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M., Sandbrink H., Lankhorst R. K., Vlak J. M. 2001; The white spot syndrome virus DNA genome sequence. Virology 286:7–22 [CrossRef]
    [Google Scholar]
  50. van Oers M. M., Vlak J. M. 2007; Baculovirus genomics. Curr Drug Targets 8:1051–1068 [CrossRef]
    [Google Scholar]
  51. Wang Y., Burand J. P., Jehle J. A. 2007a; Nudivirus genomics: diversity and classification. Virol Sin 22:128–136 [CrossRef]
    [Google Scholar]
  52. Wang Y., Kleespies R. G., Huger A. M., Jehle J. A. 2007b; The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects. J Virol 81:5395–5406 [CrossRef]
    [Google Scholar]
  53. Wang Y., van Oers M. M., Crawford A. M., Vlak J. M., Jehle J. A. 2007c; Genomic analysis of Oryctes rhinoceros virus reveals genetic relatedness to Heliothis zea virus 1. Arch Virol 152:519–531 [CrossRef]
    [Google Scholar]
  54. Wolff J. L., Valicente F. H., Martins R., Oliveira J. V., Zanotto P. M. 2008; Analysis of the genome of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV-19) and of the high genomic heterogeneity in group II nucleopolyhedroviruses. J Gen Virol 89:1202–1211 [CrossRef]
    [Google Scholar]
  55. Zhang J. H., Ohkawa T., Washburn J. O., Volkman L. E. 2005; Effect of Ac150 on virulence and pathogenesis of Autographa californica multiple nucleopolyhedrovirus in noctuid hosts. J Gen Virol 86:1619–1627 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006783-0
Loading
/content/journal/jgv/10.1099/vir.0.006783-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error