1887

Abstract

Eight new field isolates of granulovirus (CpGV) originating in Iran and Georgia and one English CpGV isolate were analysed for restriction fragment length polymorphisms (RFLPs) and by partial genome amplification and sequencing. According to the observed RFLPs, most of the predominant genotypes of these isolates could be assigned to those present in previously found isolates originating from Mexico (CpGV-M), England (CpGV-E) and Russia (CpGV-R). We suggest that these isolates should be designated genome A, B and C types, respectively. A fourth genome type was identified in three isolates and is designated D type. The isolates with A, B and D type genomes contained four open reading frames (ORFs) (ORF63–ORF66) not present in C type genomes. The lack of these ORFs in other granuloviruses suggests that the C type genome is evolutionarily ancestral to the other genome types. The B and D type genomes contained an additional insertion of a non-protein coding region of 0.7 kb, which was at different genome locations. Analysis of the partial gene sequences of late expression factor 8 (), and polyhedrin/granulin () genes revealed single nucleotide polymorphisms (SNPs) that corresponded to the RFLP types. Phylogenetic analyses based on these SNPs corroborated the proposed ancestry of the C type genome. C type viruses were also less virulent to neonate codling moth larvae than the other virus types. In conclusion, the known diversity of CpGV isolates can be described by four major genome types, which appear to exist in different isolates as genotype mixtures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006999-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/662.html?itemId=/content/journal/jgv/10.1099/vir.0.006999-0&mimeType=html&fmt=ahah

References

  1. Abbott W. S. 1925; A method of computing effectiveness of an insecticide. J Econ Entomol 18:265–267
    [Google Scholar]
  2. Arends H. M., Jehle J. A. 2002; Homologous recombination between the inverted terminal repeats of defective transposon TCp3.2 causes an inversion in the genome of Cydia pomonella granulovirus. J Gen Virol 83:1573–1578
    [Google Scholar]
  3. Asser-Kaiser S., Fritsch E., Undorf-Spahn K., Kienzle J., Eberle K. E., Gund N. A., Reineke A., Zebitz C. P. W., Heckel D. G. other authors 2007; Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317:1916–1918 [CrossRef]
    [Google Scholar]
  4. Bideshi D. K., Renault S., Stasiak K., Federici B. A., Bigot Y. 2003; Phylogenetic analysis and possible function of bro -like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531–2544 [CrossRef]
    [Google Scholar]
  5. Crook N. E., Spencer R. A., Payne C. C., Leisy D. J. 1985; Variation in Cydia pomonella granulosis virus isolates and physical maps of the DNA from three variants. J Gen Virol 66:2423–2430 [CrossRef]
    [Google Scholar]
  6. Crook N. E., James J. D., Smith I. R. L., Winstanley D. 1997; Comprehensive physical map of the Cydia pomonella granulovirus genome and sequence analysis of the granulin gene region. J Gen Virol 78:965–974
    [Google Scholar]
  7. Eberle K. E., Asser-Kaiser S., Sayed S. M., Nguyen H. T., Jehle J. A. 2008; Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol 98:293–298 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Harvey J. P., Volkman L. E. 1983; Biochemical and biological variation of Cydia pomonella (codling moth) granulosis virus. Virology 124:21–24 [CrossRef]
    [Google Scholar]
  10. Hashimoto Y., Hayakawa Y., Ueno Y., Fujita T., Sano Y., Matsomoto T. 2000; Sequence analysis of the Plutella xylostella granulovirus genome. Virology 275:358–372 [CrossRef]
    [Google Scholar]
  11. Hayakawa T., Ko R., Okano K., Seong S. I., Goto C., Maeda S. 1999; Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 262:277–297 [CrossRef]
    [Google Scholar]
  12. Herniou E. A., Luque T., Chen X., Vlak J. M., Winstanley D., Cory J. S., O'Reilly D. R. 2001; Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75:8117–8126 [CrossRef]
    [Google Scholar]
  13. Hilton S., Winstanley D. 2007; Identification and functional analysis of the origins of DNA replication in the Cydia pomonella granulovirus genome. J Gen Virol 88:1496–1504 [CrossRef]
    [Google Scholar]
  14. Hilton S., Kemp E., Keane G., Winstanley D. 2008; A bacmid approach to the genetic manipulation of baculoviruses. J Virol Methods 152:56–62 [CrossRef]
    [Google Scholar]
  15. Huber J. 1998; Western Europe. In Insect Viruses and Pest Management . pp 201–215Edited by Hunter-Fujita F. R., Entwistle P. F., Evans H. F., Crook N. E. New York: Wiley;
  16. Ivaldi-Sender C. 1974; Techniques simple pour élevage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricidae) , sur milieu artificiel. Ann Zool Ecol Anim 6:337–343 (in French
    [Google Scholar]
  17. Jehle J. A., Lange M., Wang H., Hu Z. H., Wang Y., Hauschild R. 2006; Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193 [CrossRef]
    [Google Scholar]
  18. Kang W., Suzuki M., Zemskov E., Okano K., Maeda S. 1999; Characterization of baculovirus repeated open reading frames ( bro ) in Bombyx mori nucleopolyhedrovirus. J Virol 73:10339–10345
    [Google Scholar]
  19. Lange M., Jehle J. A. 2003; The genome of the Cryptophlebia leucotreta granulovirus. Virology 317:220–236 [CrossRef]
    [Google Scholar]
  20. Lange M., Wang H., Hu Z. H., Jehle J. A. 2004; Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 325:36–47 [CrossRef]
    [Google Scholar]
  21. Li L., Donly C., Li Q., Willis L. G., Keddie B. A., Erlandson M. A., Theilmann D. A. 2002; Identification and genomic analysis of a second species of nucleopolyhedrovirus isolated from Mamestra configurata . Virology 297:226–244 [CrossRef]
    [Google Scholar]
  22. Li L., Li Q., Willis L. G., Erlandson M. A., Theilmann D. A., Donly C. 2005; Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J Gen Virol 86:91–105 [CrossRef]
    [Google Scholar]
  23. López-Ferber M., Simón O., Williams T., Caballero P. 2003; Defective or effective? Mutualistic interactions between virus genotypes. Proc Biol Sci 270:2249–2255 [CrossRef]
    [Google Scholar]
  24. Luque T., Finch R., Crook N., O'Reilly D. R., Winstanley D. 2001; The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol 82:2531–2547
    [Google Scholar]
  25. Rezapanah M., Shojai-Estabragh S., Huber J., Jehle J. A. 2008; Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. J Pest Sci 81:187–191 [CrossRef]
    [Google Scholar]
  26. Simón O., Williams T., López-Ferber M., Caballero P. 2005; Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population. Appl Environ Microbiol 71:4254–4262 [CrossRef]
    [Google Scholar]
  27. Simón O., Williams T., Caballero P., López-Ferber M. 2006; Dynamics of deletion genotypes in an experimental insect virus population. Proc R Soc Lond B Biol Sci 273:783–790 [CrossRef]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  29. Tanada Y. 1964; A granulosis virus of the codling moth, Carpocapsa pomonella ( Linnaeus ) ( Olethreutidae Lepidoptera . J Invertebr Pathol 6:378–380
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  31. Winstanley D., Crook N. E. 1993; Replication of Cydia pomonella granulosis virus in cell cultures. J Gen Virol 74:1599–1609 [CrossRef]
    [Google Scholar]
  32. Wormleaton S., Kuzio J., Winstanley D. 2003; The complete sequence of the Adoxophyes orana granulovirus genome. Virology 311:350–365 [CrossRef]
    [Google Scholar]
  33. Zemskov E. A., Kang W., Maeda S. 2000; Evidence for nucleic acid binding ability and nucleosome association of Bombix mori nucleopolyhedrovirus BRO proteins. J Virol 74:6784–6789 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006999-0
Loading
/content/journal/jgv/10.1099/vir.0.006999-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error