1887

Abstract

Poly(A)-binding protein (PABP) is a key player in mRNA circularization and translation initiation of polyadenylated mRNAs. It simultaneously binds the 3′ poly(A) tail of an mRNA and eukaryotic initiation factor 4G (eIF4G), which forms part of the translation initiation complex assembling at the 5′end, thus circularizing the RNA molecule and enhancing translation initiation. Here, we report the binding of PABP to the non-polyadenylated 3′end of dengue virus (DENV) RNA. PABP binds the DENV 3′ untranslated region (3′UTR) internally, upstream of the conserved 3′stem–loop near the two dumb-bell structures, and can be displaced by poly(A) RNA. The PABP-specific translation inhibitor PABP-interacting protein 2 (Paip2) interferes with the DENV 3′UTR–PABP interaction, and translation of DENV reporter RNAs in baby hamster kidney cell extracts is inhibited by Paip2 in a dose-dependent manner. Our findings show an expanded translation mechanism for PABP, binding to a viral RNA lacking a terminal poly(A) tail.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007021-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/687.html?itemId=/content/journal/jgv/10.1099/vir.0.007021-0&mimeType=html&fmt=ahah

References

  1. Adam S. A., Nakagawa T., Swanson M. S., Woodruff T. K., Dreyfuss G. 1986; mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6:2932–2943
    [Google Scholar]
  2. Alvarez D. E., De Lella Ezcurra A. L., Fucito S., Gamarnik A. V. 2005a; Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339:200–212 [CrossRef]
    [Google Scholar]
  3. Alvarez D. E., Lodeiro M. F., Luduena S. J., Pietrasanta L. I., Gamarnik A. V. 2005b; Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643 [CrossRef]
    [Google Scholar]
  4. Baer B. W., Kornberg R. D. 1983; The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol 96:717–721 [CrossRef]
    [Google Scholar]
  5. Bradrick S. S., Dobrikova E. Y., Kaiser C., Shveygert M., Gromeier M. 2007; Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. RNA 13:1582–1593 [CrossRef]
    [Google Scholar]
  6. Brinton M. A., Fernandez A. V., Dispoto J. H. 1986; The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121 [CrossRef]
    [Google Scholar]
  7. Burd C. G., Matunis E. L., Dreyfuss G. 1991; The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. Mol Cell Biol 11:3419–3424
    [Google Scholar]
  8. Chiu W. W., Kinney R. M., Dreher T. W. 2005; Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315 [CrossRef]
    [Google Scholar]
  9. Clyde K., Kyle J. L., Harris E. 2006; Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431 [CrossRef]
    [Google Scholar]
  10. Davis W. G., Blackwell J. L., Shi P. Y., Brinton M. A. 2007; Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81:10172–10187 [CrossRef]
    [Google Scholar]
  11. De Nova-Ocampo M., Villegas-Sepulveda N., del Angel R. M. 2002; Translation elongation factor-1 α , La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295:337–347 [CrossRef]
    [Google Scholar]
  12. Edgil D., Harris E. 2006; End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res 119:43–51 [CrossRef]
    [Google Scholar]
  13. Edgil D., Diamond M. S., Holden K. L., Paranjape S. M., Harris E. 2003; Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology 317:275–290 [CrossRef]
    [Google Scholar]
  14. Edgil D., Polacek C., Harris E. 2006; Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–2986 [CrossRef]
    [Google Scholar]
  15. Etchison D., Milburn S. C., Edery I., Sonenberg N., Hershey J. W. 1982; Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257:14806–14810
    [Google Scholar]
  16. Gallie D. R. 1991; The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5:2108–2116 [CrossRef]
    [Google Scholar]
  17. Gibbons R. V., Vaughn D. W. 2002; Dengue: an escalating problem. BMJ 324:1563–1566 [CrossRef]
    [Google Scholar]
  18. Görlach M., Burd C. G., Dreyfuss G. 1994; The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res 211:400–407 [CrossRef]
    [Google Scholar]
  19. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [CrossRef]
    [Google Scholar]
  20. Herold J., Andino R. 2001; Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 7:581–591 [CrossRef]
    [Google Scholar]
  21. Holden K. L., Harris E. 2004; Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329:119–133 [CrossRef]
    [Google Scholar]
  22. Holden K. L., Stein D. A., Pierson T. C., Ahmed A. A., Clyde K., Iversen P. L., Harris E. 2006; Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure. Virology 344:439–452 [CrossRef]
    [Google Scholar]
  23. Imataka H., Gradi A., Sonenberg N. 1998; A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489 [CrossRef]
    [Google Scholar]
  24. Kahvejian A., Svitkin Y. V., Sukarieh R., M'Boutchou M. N., Sonenberg N. 2005; Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113 [CrossRef]
    [Google Scholar]
  25. Karim M. M., Svitkin Y. V., Kahvejian A., De Crescenzo G., Costa-Mattioli M., Sonenberg N. 2006; A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc Natl Acad Sci U S A 103:9494–9499 [CrossRef]
    [Google Scholar]
  26. Khaleghpour K., Kahvejian A., De Crescenzo G., Roy G., Svitkin Y. V., Imataka H., O'Connor-McCourt M., Sonenberg N. 2001a; Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol Cell Biol 21:5200–5213 [CrossRef]
    [Google Scholar]
  27. Khaleghpour K., Svitkin Y. V., Craig A. W., DeMaria C. T., Deo R. C., Burley S. K., Sonenberg N. 2001b; Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol Cell 7:205–216 [CrossRef]
    [Google Scholar]
  28. Krausslich H. G., Nicklin M. J., Toyoda H., Etchison D., Wimmer E. 1987; Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. J Virol 61:2711–2718
    [Google Scholar]
  29. Lloyd R. E., Grubman M. J., Ehrenfeld E. 1988; Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J Virol 62:4216–4223
    [Google Scholar]
  30. Mohan P. M., Padmanabhan R. 1991; Detection of stable secondary structure at the 3′ terminus of dengue virus type 2 RNA. Gene 108:185–191 [CrossRef]
    [Google Scholar]
  31. Olsthoorn R. C., Bol J. F. 2001; Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7:1370–1377
    [Google Scholar]
  32. Paranjape S. M., Harris E. 2007; Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282:30497–30508 [CrossRef]
    [Google Scholar]
  33. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325 [CrossRef]
    [Google Scholar]
  34. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. 1998; A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83 [CrossRef]
    [Google Scholar]
  35. Pestova T. V., Lorsch J. R., Hellen C. U. T. 2007; The mechanism of translation initiation in eukaryotes. In Translational Control in Biology and Medicine pp 87–128Edited by Mathews M. B., Sonenberg N., Hershey J. W. B. Woodbury, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Piron M., Vende P., Cohen J., Poncet D. 1998; Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17:5811–5821 [CrossRef]
    [Google Scholar]
  37. Proutski V., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202 [CrossRef]
    [Google Scholar]
  38. Sachs A. B., Bond M. W., Kornberg R. D. 1986; A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45:827–835 [CrossRef]
    [Google Scholar]
  39. Sladic R. T., Lagnado C. A., Bagley C. J., Goodall G. J. 2004; Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur J Biochem 271:450–457 [CrossRef]
    [Google Scholar]
  40. Tarun S. Z., Jr & Sachs A. B. 1996; Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177
    [Google Scholar]
  41. Vende P., Piron M., Castagne N., Poncet D. 2000; Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74:7064–7071 [CrossRef]
    [Google Scholar]
  42. You S., Padmanabhan R. 1999; A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007021-0
Loading
/content/journal/jgv/10.1099/vir.0.007021-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error