1887

Abstract

The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007294-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/2/398.html?itemId=/content/journal/jgv/10.1099/vir.0.007294-0&mimeType=html&fmt=ahah

References

  1. Amal N. M., Lye M. S., Ksiazek T. G., Kitsutani P. D., Hanjeet K. S., Kamaluddin M. A., Ong F., Devi S., Stockton P. C. other authors 2000; Risk factors for Nipah virus transmission, Port Dickson, Negeri Sembilan, Malaysia: results from a hospital-based case-control study. Southeast Asian J Trop Med Public Health 31:301–306
    [Google Scholar]
  2. Banerjee R. 2007; Drug for bat virus combat. The Telegraph India . http://www.telegraphindia.com/1070510/asp/bengal/story_7757746.asp
  3. Bankamp B., Wilson J., Bellini W. J., Rota P. A. 2005; Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 336:120–129 [CrossRef]
    [Google Scholar]
  4. Bankamp B., Lopareva E. N., Kremer J. R., Tian Y., Clemens M. S., Patel R., Fowlkes A. L., Kessler J. R., Muller C. P. other authors 2008; Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses. Virus Res 135:298–306 [CrossRef]
    [Google Scholar]
  5. Berhane Y., Weingartl H. M., Lopez J., Neufeld J., Czub S., Embury-Hyatt C., Goolia M., Copps J., Czub M. 2008; Bacterial infections in pigs experimentally infected with nipah virus. Transbound Emerg Dis 55:165–174 [CrossRef]
    [Google Scholar]
  6. Chadha M. S., Comer J. A., Lowe L., Rota P. A., Rollin P. E., Bellini W. J., Ksiazek T. G., Mishra A. 2006; Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 12:235–240 [CrossRef]
    [Google Scholar]
  7. Chan Y. P., Koh C. L., Lam S. K., Wang L. F. 2004; Mapping of domains responsible for nucleocapsid protein-phosphoprotein interaction of Henipaviruses. J Gen Virol 85:1675–1684 [CrossRef]
    [Google Scholar]
  8. Chew M. H., Arguin P. M., Shay D. K., Goh K. T., Rollin P. E., Shieh W. J., Zaki S. R., Rota P. A., Ling A. E. other authors 2000; Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 181:1760–1763 [CrossRef]
    [Google Scholar]
  9. Childs K., Stock N., Ross C., Andrejeva J., Hilton L., Skinner M., Randall R., Goodbourn S. 2007; mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200 [CrossRef]
    [Google Scholar]
  10. Chong H. T., Kamarulzaman A., Tan C. T., Goh K. J., Thayaparan T., Kunjapan S. R., Chew N. K., Chua K. B., Lam S. K. 2001; Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 49:810–813 [CrossRef]
    [Google Scholar]
  11. Chua K. B., Bellini W. J., Rota P. A., Harcourt B. H., Tamin A., Lam S. K., Ksiazek T. G., Rollin P. E., Zaki S. R. other authors 2000; Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–1435 [CrossRef]
    [Google Scholar]
  12. Chua K. B., Koh C. L., Hooi P. S., Wee K. F., Khong J. H., Chua B. H., Chan Y. P., Lim M. E., Lam S. K. 2002; Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 4:145–151 [CrossRef]
    [Google Scholar]
  13. Curran J., de Melo M., Moyer S., Kolakofsky D. 1991; Characterization of the Sendai virus V protein with an anti-peptide antiserum. Virology 184:108–116 [CrossRef]
    [Google Scholar]
  14. Devaux P., Cattaneo R. 2004; Measles virus phosphoprotein gene products: conformational flexibility of the P/V protein amino-terminal domain and C protein infectivity factor function. J Virol 78:11632–11640 [CrossRef]
    [Google Scholar]
  15. Devaux P., Hodge G., McChesney M. B., Cattaneo R. 2008; Attenuation of V- or C-defective measles viruses: infection control by the inflammatory and interferon responses of rhesus monkeys. J Virol 82:5359–5367 [CrossRef]
    [Google Scholar]
  16. Escoffier C., Manie S., Vincent S., Muller C. P., Billeter M., Gerlier D. 1999; Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J Virol 73:1695–1698
    [Google Scholar]
  17. Galinski M. S., Troy R. M., Banerjee A. K. 1992; RNA editing in the phosphoprotein gene of the human parainfluenza virus type 3. Virology 186:543–550 [CrossRef]
    [Google Scholar]
  18. Garcin D., Curran J., Itoh M., Kolakofsky D. 2001; Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. J Virol 75:6800–6807 [CrossRef]
    [Google Scholar]
  19. Georges-Courbot M. C., Contamin H., Faure C., Loth P., Baize S., Leyssen P., Neyts J., Deubel V. 2006; Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 50:1768–1772 [CrossRef]
    [Google Scholar]
  20. Gotoh B., Komatsu T., Takeuchi K., Yokoo J. 2001; Paramyxovirus accessory proteins as interferon antagonists. Microbiol Immunol 45:787–800 [CrossRef]
    [Google Scholar]
  21. Grogan C. C., Moyer S. A. 2001; Sendai virus wild-type and mutant C proteins show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 288:96–108 [CrossRef]
    [Google Scholar]
  22. Gurley E. S., Montgomery J. M., Hossain M. J., Bell M., Azad A. K., Islam M. R., Molla M. A., Carroll D. S., Ksiazek T. G. other authors 2007; Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 13:1031–1037 [CrossRef]
    [Google Scholar]
  23. Halpin K., Young P. L., Field H. E., Mackenzie J. S. 2000; Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81:1927–1932
    [Google Scholar]
  24. Halpin K., Bankamp B., Harcourt B. H., Bellini W. J., Rota P. A. 2004; Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 85:701–707 [CrossRef]
    [Google Scholar]
  25. Hanna J. N., McBride W. J., Brookes D. L., Shield J., Taylor C. T., Smith I. L., Craig S. B., Smith G. A. 2006; Hendra virus infection in a veterinarian. Med J Aust 185:562–564
    [Google Scholar]
  26. Hausmann S., Garcin D., Morel A. S., Kolakofsky D. 1999; Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J Virol 73:343–351
    [Google Scholar]
  27. Hooper P. T., Williamson M. M. 2000; Hendra and Nipah virus infections. Vet Clin North Am Equine Pract 16:597–603
    [Google Scholar]
  28. Hsu V. P., Hossain M. J., Parashar U. D., Ali M. M., Ksiazek T. G., Kuzmin I., Niezgoda M., Rupprecht C., Bresee J., Breiman R. F. 2004; Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10:2082–2087 [CrossRef]
    [Google Scholar]
  29. Jack P. J., Boyle D. B., Eaton B. T., Wang L. F. 2005; The complete genome sequence of J virus reveals a unique genome structure in the family Paramyxoviridae. J Virol 79:10690–10700 [CrossRef]
    [Google Scholar]
  30. Kato A., Kiyotani K., Sakai Y., Yoshida T., Nagai Y. 1997; The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J 16:578–587 [CrossRef]
    [Google Scholar]
  31. Kolakofsky D., Roux L., Garcin D., Ruigrok R. W. 2005; Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J Gen Virol 86:1869–1877 [CrossRef]
    [Google Scholar]
  32. Li Z., Yu M., Zhang H., Magoffin D. E., Jack P. J., Hyatt A., Wang H. Y., Wang L. F. 2006; Beilong virus, a novel paramyxovirus with the largest genome of non-segmented negative-stranded RNA viruses. Virology 346:219–228 [CrossRef]
    [Google Scholar]
  33. Ludlow L. E., Lo M. K., Rodriguez J. J., Rota P. A., Horvath C. M. 2008; Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion. J Virol 82:6259–6271 [CrossRef]
    [Google Scholar]
  34. Mebatsion T., de Vaan L. T., de Haas N., Romer-Oberdorfer A., Braber M. 2003; Identification of a mutation in editing of defective Newcastle disease virus recombinants that modulates P-gene mRNA editing and restores virus replication and pathogenicity in chicken embryos. J Virol 77:9259–9265 [CrossRef]
    [Google Scholar]
  35. Murray K., Rogers R., Selvey L., Selleck P., Hyatt A., Gould A., Gleeson L., Hooper P., Westbury H. 1995a; A novel morbillivirus pneumonia of horses and its transmission to humans. Emerg Infect Dis 1:31–33 [CrossRef]
    [Google Scholar]
  36. Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L. other authors 1995b; A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97 [CrossRef]
    [Google Scholar]
  37. Nakatsu Y., Takeda M., Ohno S., Koga R., Yanagi Y. 2006; Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861–11867 [CrossRef]
    [Google Scholar]
  38. Nakatsu Y., Takeda M., Ohno S., Shirogane Y., Iwasaki M., Yanagi Y. 2008; Measles virus circumvents the host interferon response by different actions of the C and V proteins. J Virol 82:8296–8306 [CrossRef]
    [Google Scholar]
  39. Park M. S., Shaw M. L., Munoz-Jordan J., Cros J. F., Nakaya T., Bouvier N., Palese P., Garcia-Sastre A., Basler C. F. 2003; Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77:1501–1511 [CrossRef]
    [Google Scholar]
  40. Parks C. L., Witko S. E., Kotash C., Lin S. L., Sidhu M. S., Udem S. A. 2006; Role of V protein RNA binding in inhibition of measles virus minigenome replication. Virology 348:96–106 [CrossRef]
    [Google Scholar]
  41. Paterson R. G., Leser G. P., Shaughnessy M. A., Lamb R. A. 1995; The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology 208:121–131 [CrossRef]
    [Google Scholar]
  42. Paton N. I., Leo Y. S., Zaki S. R., Auchus A. P., Lee K. E., Ling A. E., Chew S. K., Ang B., Rollin P. E. other authors 1999; Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 354:1253–1256 [CrossRef]
    [Google Scholar]
  43. Rodriguez J. J., Horvath C. M. 2004; Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus V proteins inhibit interferon signaling. Viral Immunol 17:210–219 [CrossRef]
    [Google Scholar]
  44. Rodriguez J. J., Parisien J. P., Horvath C. M. 2002; Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 76:11476–11483 [CrossRef]
    [Google Scholar]
  45. Rodriguez J. J., Wang L. F., Horvath C. M. 2003; Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J Virol 77:11842–11845 [CrossRef]
    [Google Scholar]
  46. Shaw M. L., Garcia-Sastre A., Palese P., Basler C. F. 2004; Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78:5633–5641 [CrossRef]
    [Google Scholar]
  47. Shaw M. L., Cardenas W. B., Zamarin D., Palese P., Basler C. F. 2005; Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 79:6078–6088 [CrossRef]
    [Google Scholar]
  48. Shiell B. J., Gardner D. R., Crameri G., Eaton B. T., Michalski W. P. 2003; Sites of phosphorylation of P and V proteins from Hendra and Nipah viruses: newly emerged members of Paramyxoviridae. Virus Res 92:55–65 [CrossRef]
    [Google Scholar]
  49. Sleeman K., Bankamp B., Hummel K. B., Lo M. K., Bellini W. J., Rota P. A. 2008; The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 89:1300–1308 [CrossRef]
    [Google Scholar]
  50. Smallwood S., Moyer S. A. 2004; The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins. Virology 318:439–450 [CrossRef]
    [Google Scholar]
  51. Takeuchi K., Tanabayashi K., Hishiyama M., Yamada Y. K., Yamada A., Sugiura A. 1990; Detection and characterization of mumps virus V protein. Virology 178:247–253 [CrossRef]
    [Google Scholar]
  52. Takeuchi K., Takeda M., Miyajima N., Ami Y., Nagata N., Suzaki Y., Shahnewaz J., Kadota S., Nagata K. 2005; Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79:7838–7844 [CrossRef]
    [Google Scholar]
  53. Vanchiere J. A., Bellini W. J., Moyer S. A. 1995; Hypermutation of the phosphoprotein and altered mRNA editing in the hamster neurotropic strain of measles virus. Virology 207:555–561 [CrossRef]
    [Google Scholar]
  54. Witko S. E., Kotash C., Sidhu M. S., Udem S. A., Parks C. L. 2006; Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 348:107–119 [CrossRef]
    [Google Scholar]
  55. Yamada H., Hayata S., Omata-Yamada T., Taira H., Mizumoto K., Iwasaki K. 1990; Association of the Sendai virus C protein with nucleocapsids. Arch Virol 113:245–253
    [Google Scholar]
  56. Yob J. M., Field H., Rashdi A. M., Morrissy C., van der Heide B., Rota P., bin Adzhar A., White J., Daniels P. other authors 2001; Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7:439–441 [CrossRef]
    [Google Scholar]
  57. Yoneda M., Guillaume V., Ikeda F., Sakuma Y., Sato H., Wild T. F., Kai C. 2006; Establishment of a Nipah virus rescue system. Proc Natl Acad Sci U S A 103:16508–16513 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007294-0
Loading
/content/journal/jgv/10.1099/vir.0.007294-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error