1887

Abstract

MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27. Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27 3′-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27 in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27 levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27 in the induction and progression of T-cell lymphomas.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007831-0
2009-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1164.html?itemId=/content/journal/jgv/10.1099/vir.0.007831-0&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Kato S. 1974; Two cell lines from lymphomas of Marek's disease. Biken J 17:105–116
    [Google Scholar]
  2. Bron R., Eickholt B. J., Vermeren M., Fragale N., Cohen J. 2004; Functional knockdown of neuropilin-1 in the developing chick nervous system by siRNA hairpins phenocopies genetic ablation in the mouse. Dev Dyn 230:299–308 [CrossRef]
    [Google Scholar]
  3. Brown A. C., Baigent S. J., Smith L. P., Chattoo J. P., Petherbridge L. J., Hawes P., Allday M. J., Nair V. 2006; Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek's disease virus. Proc Natl Acad Sci U S A 103:1687–1692 [CrossRef]
    [Google Scholar]
  4. Burnside J., Morgan R. W. 2007; Genomics and Marek's disease virus. Cytogenet Genome Res 117:376–387 [CrossRef]
    [Google Scholar]
  5. Burnside J., Bernberg E., Anderson A., Lu C., Meyers B. C., Green P. J., Jain N., Isaacs G., Morgan R. W. 2006; Marek's disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol 80:8778–8786 [CrossRef]
    [Google Scholar]
  6. Burnside J., Ouyang M., Anderson A., Bernberg E., Lu C., Meyers B. C., Green P. J., Markis M., Isaacs G. other authors 2008; Deep sequencing of chicken microRNAs. BMC Genomics 9:185 [CrossRef]
    [Google Scholar]
  7. Buza J. J., Burgess S. C. 2007; Modeling the proteome of a Marek's disease transformed cell line: a natural animal model for CD30 overexpressing lymphomas. Proteomics 7:1316–1326 [CrossRef]
    [Google Scholar]
  8. Chu I. M., Hengst L., Slingerland J. M. 2008; The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267 [CrossRef]
    [Google Scholar]
  9. Croce C. M. 2008; MicroRNAs and lymphomas. Ann Oncol 19:Suppl 4iv39–iv40
    [Google Scholar]
  10. Dalmay T. 2008; MicroRNAs and cancer. J Intern Med 263:366–375 [CrossRef]
    [Google Scholar]
  11. Doi K., Kojima A., Akiyama Y., Kato S. 1976; Pathogenicity for chicks of line cells from lymphoma of Marek's disease. Natl Inst Anim Health Q (Tokyo) 16:16–24
    [Google Scholar]
  12. Felli N., Fontana L., Pelosi E., Botta R., Bonci D., Facchiano F., Liuzzi F., Lulli V., Morsilli O. other authors 2005; MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102:18081–18086 [CrossRef]
    [Google Scholar]
  13. Fornari F., Gramantieri L., Ferracin M., Veronese A., Sabbioni S., Calin G. A., Grazi G. L., Giovannini C., Croce C. M. other authors 2008; MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661 [CrossRef]
    [Google Scholar]
  14. Galardi S., Mercatelli N., Giorda E., Massalini S., Frajese G. V., Ciafre S. A., Farace M. G. 2007; miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1 . J Biol Chem 282:23716–23724 [CrossRef]
    [Google Scholar]
  15. Gartel A. L., Kandel E. S. 2008; miRNAs: little known mediators of oncogenesis. Semin Cancer Biol 18:103–110 [CrossRef]
    [Google Scholar]
  16. Gillies J. K., Lorimer I. A. 2007; Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009 [CrossRef]
    [Google Scholar]
  17. Gimeno I. M., Witter R. L., Hunt H. D., Reddy S. M., Neumann U. 2001; Differential attenuation of the induction by Marek's disease virus of transient paralysis and persistent neurological disease: a model for pathogenesis studies. Avian Pathol 30:397–409 [CrossRef]
    [Google Scholar]
  18. Gottwein E., Cullen B. R. 2008; Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387 [CrossRef]
    [Google Scholar]
  19. Harpavat S., Cepko C. L. 2006; RCAS-RNAi: a loss-of-function method for the developing chick retina. BMC Dev Biol 6:2 [CrossRef]
    [Google Scholar]
  20. He L., Hannon G. J. 2004; MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531 [CrossRef]
    [Google Scholar]
  21. Hirai K., Yamada M., Arao Y., Kato S., Nii S. 1990; Replicating Marek's disease virus (MDV) serotype 2 DNA with inserted MDV serotype 1 DNA sequences in a Marek's disease lymphoblastoid cell line MSB1–41C. Arch Virol 114:153–165 [CrossRef]
    [Google Scholar]
  22. ICTVdB Management 2006; 00.031.1.03 Mardivirus . In ICTVdB - The Universal Virus Database, version 4Edited by Büchen-Osmond. NY, USA: Columbia University; http://phene.cpmc.columbia.edu/Ictv/index.htm
    [Google Scholar]
  23. Kanamori A., Ikuta K., Ueda S., Kato S., Hirai K. 1987; Methylation of Marek's disease virus DNA in chicken T-lymphoblastoid cell lines. J Gen Virol 68:1485–1490 [CrossRef]
    [Google Scholar]
  24. Lawrie C. H., Saunders N. J., Soneji S., Palazzo S., Dunlop H. M., Cooper C. D. O., Brown P. J., Troussard X., Mossafa H. other authors 2008; MicroRNA expression in lymphocyte development and malignancy. Leukemia 22:1440–1446 [CrossRef]
    [Google Scholar]
  25. Lee L. F., Nazerian K., Boezi J. A. 1975; Marek's disease virus DNA in a chicken lymphoblastoid cell line (MSB-1) and in virus-induced tumours. IARC Sci Publ 11:199–204
    [Google Scholar]
  26. le Sage C., Nagel R., Agami R. 2007a; Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6:2742–2749 [CrossRef]
    [Google Scholar]
  27. le Sage C., Nagel R., Egan D. A., Schrier M., Mesman E., Mangiola A., Anile C., Maira G., Mercatelli N. other authors 2007b; Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708 [CrossRef]
    [Google Scholar]
  28. Lupiani B., Lee L. F., Cui X., Gimeno I., Anderson A., Morgan R. W., Silva R. F., Witter R. L., Kung H. J., Reddy S. M. 2004; Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc Natl Acad Sci U S A 101:11815–11820 [CrossRef]
    [Google Scholar]
  29. Medina R., Zaidi S. K., Liu C. G., Stein J. L., van Wijnen A. J., Croce C. M., Stein G. S. 2008; MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780 [CrossRef]
    [Google Scholar]
  30. Morgan R. W., Xie Q., Cantello J. L., Miles A. M., Bernberg E. L., Kent J., Anderson A. 2001; Marek's disease virus latency. Curr Top Microbiol Immunol 255:223–243
    [Google Scholar]
  31. Osterrieder N., Kamil J. P., Schumacher D., Tischer B. K., Trapp S. 2006; Marek's disease virus: from miasma to model. Nat Rev Microbiol 4:283–294 [CrossRef]
    [Google Scholar]
  32. Payne L. N., Howes K., Rennie M., Bumstead J. M., Kidd A. W. 1981; Use of an agar culture technique for establishing lymphoid cell lines from Marek's disease lymphomas. Int J Cancer 28:757–766 [CrossRef]
    [Google Scholar]
  33. Pfeffer S., Sewer A., Lagos-Quintana M., Sheridan R., Sander C., Grasser F. A., van Dyk L. F., Ho C. K., Shuman S. other authors 2005; Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276 [CrossRef]
    [Google Scholar]
  34. Scherr M., Venturini L., Battmer K., Schaller-Schoenitz M., Schaefer D., Dallmann I., Ganser A., Eder M. 2007; Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res 35:e149 [CrossRef]
    [Google Scholar]
  35. Sullivan C. S., Grundhoff A. 2007; Identification of viral microRNAs. Methods Enzymol 427:3–23
    [Google Scholar]
  36. Takagi M., Ohashi K., Morimura T., Sugimoto C., Onuma M. 2006a; The presence of the p53 transcripts with truncated open reading frames in Marek's disease tumor-derived cell lines. Leuk Res 30:987–992 [CrossRef]
    [Google Scholar]
  37. Takagi M., Takeda T., Asada Y., Sugimoto C., Onuma M., Ohashi K. 2006b; The presence of a short form of p53 in chicken lymphoblastoid cell lines during apoptosis. J Vet Med Sci 68:561–566 [CrossRef]
    [Google Scholar]
  38. Viglietto G., Motti M., Fusco A. 2002; Understanding p27Kip1 deregulation in cancer. Cell Cycle 1:394–400 [CrossRef]
    [Google Scholar]
  39. Visone R., Russo L., Pallante P., De Martino I., Ferraro A., Leone V., Borbone E., Petrocca F., Alder H. other authors 2007; MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791–798 [CrossRef]
    [Google Scholar]
  40. Williams A. E. 2008; Functional aspects of animal microRNAs. Cell Mol Life Sci 65:545–562 [CrossRef]
    [Google Scholar]
  41. Xu H., Yao Y., Zhao Y., Smith L. P., Baigent S. J., Nair V. 2008; Analysis of the expression profiles of Marek's disease virus-encoded microRNAs by real-time quantitative PCR. J Virol Methods 149:201–208 [CrossRef]
    [Google Scholar]
  42. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Sewer A., Zavolan M., Nair V. 2007; Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol 81:7164–7170 [CrossRef]
    [Google Scholar]
  43. Yao Y., Zhao Y., Xu H., Smith L. P., Lawrie C. H., Watson M., Nair V. 2008; MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 82:4007–4015 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007831-0
Loading
/content/journal/jgv/10.1099/vir.0.007831-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error