1887

Abstract

Avian reovirus fibre, a homo-trimer of the C protein, is a minor component of the avian reovirus outer capsid. It is anchored via a short N-terminal sequence to the inner capsid C pentamer, and its protruding globular C-terminal domain is responsible for primary host cell attachment. We have previously solved the structure of a receptor-binding fragment in which residues 160–191 form a triple -spiral and 196–326 a -barrel head domain. Here we have expressed, purified and crystallized a major C fragment comprising residues 117–326. Its structure, which was solved by molecular replacement using the previously determined receptor-binding domain structure and refined to 1.75 Å (0.175 nm) resolution, reveals an -helical triple coiled-coil connected to the previously solved structure by a zinc-ion-containing linker. The coiled-coil domain contains two chloride ion binding sites, as well as specific trimerization and registration sequences. The linker may act as a functionally important hinge.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008276-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/672.html?itemId=/content/journal/jgv/10.1099/vir.0.008276-0&mimeType=html&fmt=ahah

References

  1. Auld D. S. 2005; Zinc enzymes. In Encyclopedia of Inorganic Chemistry , 2nd edn. vol IX pp 5885–5927Edited by King R. B. Chichester, UK: John Wiley;
    [Google Scholar]
  2. Barton E. S., Forrest J. C., Connolly J. L., Chappell J. D., Liu Y., Schnell F. J., Nusrat A., Parkos C. A., Dermody T. S. 2001; Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451 [CrossRef]
    [Google Scholar]
  3. Benavente J., Martinez-Costas J. 2007; Avian reovirus: structure and biology. Virus Res 123:105–119 [CrossRef]
    [Google Scholar]
  4. Brunger A. T. 1997; Free R value: cross-validation in crystallography. Methods Enzymol 277:366–396
    [Google Scholar]
  5. Burkhard P., Meier M., Lustig A. 2000; Design of a minimal protein oligomerization domain by a structural approach. Protein Sci 9:2294–2301 [CrossRef]
    [Google Scholar]
  6. Collaborative Computational Project Number 4: 1994; The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763 [CrossRef]
    [Google Scholar]
  7. Conners R., Hill D. J., Borodina E., Agnew C., Daniell S. J., Burton N. M., Sessions R. B., Clarke A. R., Catto L. E. other authors 2008; The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil. EMBO J 27:1779–1789 [CrossRef]
    [Google Scholar]
  8. Costas C. 2004; Caracterización de las proteínas σ C y p17 del reovirus aviar S1133 (Characterisation of the proteins σ C and p17 of avian reovirus S1133. PhD thesis Universidade de Santiago de Compostela (in Spanish;
  9. Davis I. W., Leaver-Fay A., Chen V. B., Block J. N., Kapral G. J., Wang X., Murray L. W., Arendall W. B., III, Snoeyink J. other authors 2007; MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383 [CrossRef]
    [Google Scholar]
  10. Emsley P., Cowtan K. 2004; Model building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132 [CrossRef]
    [Google Scholar]
  11. Fass D., Harrison S. C., Kim P. S. 1996; Retrovirus envelope domain at 1.7 Å resolution. Nat Struct Biol 3:465–469 [CrossRef]
    [Google Scholar]
  12. Fraser R. D. B., MacRae T. P. 1973 Conformation in Fibrous Proteins and Related Synthetic Polypeptides New York, USA: Academic Press;
    [Google Scholar]
  13. Grande A., Rodriguez E., Costas C., Everitt E., Benavente J. 2000; Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein σ C. Virology 274:367–377 [CrossRef]
    [Google Scholar]
  14. Guardado-Calvo P., Fox G. C., Hermo-Parrado X. L., Llamas-Saiz A. L., Costas C., Martinez-Costas J., Benavente J., van Raaij M. J. 2005; Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol 354:137–149 [CrossRef]
    [Google Scholar]
  15. Guglielmi K. M., Johnson E. M., Stehle T., Dermody T. S. 2006; Attachment and cell entry of mammalian orthoreovirus. Curr Top Microbiol Immunol 309:1–38
    [Google Scholar]
  16. Harbury P. B., Zhang T., Kim P. S., Alber T. 1993; A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407 [CrossRef]
    [Google Scholar]
  17. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. 1991; Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119 [CrossRef]
    [Google Scholar]
  18. Kammerer R. A., Kostrewa D., Zurdo J., Detken A., Garcia-Echevarria C., Green J. D., Muller S. A., Meier B. H., Winkler F. K., Dobson C. M. 2004; Exploring amyloid formation by a de novo design. Proc Natl Acad Sci U S A 101:4435–4440 [CrossRef]
    [Google Scholar]
  19. Kammerer R. A., Kostrewa D., Progias P., Honnappa S., Avila D., Lustig A., Winkler F. K., Pieters J., Steinmetz M. O. 2005; A conserved trimerization motif controls the topology of short coiled coils. Proc Natl Acad Sci U S A 102:13891–13896 [CrossRef]
    [Google Scholar]
  20. Kleywegt G. J., Zou J. Y., Kjeldgaard M., Jones T. A. 2001; Around O. In International Tables for Crystallography vol F. Crystallography of Biological Macromolecules pp 353–356Edited by Rossmann M. G., Arnold E. Dordrecht, NL: Kluwer Academic Publishers;
    [Google Scholar]
  21. Lamzin V. S., Wilson K. S. 1993; Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr 49:129–149 [CrossRef]
    [Google Scholar]
  22. Lumb K. J., Kim P. S. 1995; A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 34:8642–8648 [CrossRef]
    [Google Scholar]
  23. Lupas A., Van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science 252:1162–1164 [CrossRef]
    [Google Scholar]
  24. Malashkevich V. N., Schneider B. J., McNally M. L., Milholle M. A., Pang J. X., Kim P. S. 1999; Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9 Å resolution. Proc Natl Acad Sci U S A 96:2662–2667 [CrossRef]
    [Google Scholar]
  25. Meier M., Lustig A., Aebi U., Burkhard P. 2002; Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide. J Struct Biol 137:65–72 [CrossRef]
    [Google Scholar]
  26. Mitraki A., Miller S., van Raaij M. J. 2002; Review: conformation and folding of novel beta-structural elements in viral fiber proteins: the triple beta-spiral and triple beta-helix. J Struct Biol 137:236–247 [CrossRef]
    [Google Scholar]
  27. Morris R. J., Perrakis A., Lamzin V. S. 2003; ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229–244
    [Google Scholar]
  28. Murshudov G. N., Vagin A. A., Dodson E. J. 1997; Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255 [CrossRef]
    [Google Scholar]
  29. Oakley M. G., Kim P. S. 1998; A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 37:12603–12610 [CrossRef]
    [Google Scholar]
  30. Otwinowski Z., Minor W. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
    [Google Scholar]
  31. Renard M., Varela P. F., Letzelter C., Duquerroy S., Rey F. A., Heidmann T. 2005; Crystal structure of a pivotal domain of human syncytin-2, a 40 million years old endogenous retrovirus fusogenic envelope gene captured by primates. J Mol Biol 352:1029–1034 [CrossRef]
    [Google Scholar]
  32. Richardson J. S. 1981; The anatomy and taxonomy of protein structure. Adv Protein Chem 34:167–339
    [Google Scholar]
  33. Shapouri M. R. S., Kane M., Letarte M., Bergeron J., Arella M., Salim A. 1995; Cloning, sequencing and expression of the S1 gene of avian reovirus. J Gen Virol 76:1515–1520 [CrossRef]
    [Google Scholar]
  34. Shapouri M. R. S., Arella M., Salim A. 1996; Evidence for the multimeric nature and cell binding ability of avian reovirus σ 3 protein. J Gen Virol 77:1203–1210 [CrossRef]
    [Google Scholar]
  35. Sheriff S., Chang C. Y., Ezekowitz R. A. 1994; Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α -helical coiled-coil. Nat Struct Biol 1:789–794 [CrossRef]
    [Google Scholar]
  36. Songserm T., van Roozelaar D., Kant A., Pol J., Pijpers A., ter Huurne A. 2003; Enteropathogenicity of Dutch and German avian reoviruses in SPF white leghorn chickens and broilers. Vet Res 34:285–295 [CrossRef]
    [Google Scholar]
  37. Spandidos D. A., Graham A. F. 1976; Physical and chemical characterization of an avian reovirus. J Virol 19:968–976
    [Google Scholar]
  38. Strelkov S. V., Burkhard P. 2002; Analysis of α -helical coiled coils with the program twister reveals a structural mechanism for stutter compensation. J Struct Biol 137:54–64 [CrossRef]
    [Google Scholar]
  39. Tao Y., Strelkov S. V., Mesyanzhinov V. V., Rossmann M. G. 1997; Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5:789–798 [CrossRef]
    [Google Scholar]
  40. Tripet B., Wagschal K., Lavigne P., Mant C. T., Hodges R. S. 2000; Effects of side-chain characteristics of stability and oligomerization state of a de novo -designed model coiled coil: 20 amino acid substitutions in position d. J Mol Biol 300:377–402 [CrossRef]
    [Google Scholar]
  41. Vagin A., Teplyakov A. 2000; An approach to multi-copy search in molecular replacement. Acta Crystallogr D Biol Crystallogr 56:1622–1624 [CrossRef]
    [Google Scholar]
  42. van Raaij M. J., Hermo Parrado X. L., Guardado Calvo P., Fox G. C., Llamas-Saiz A. L., Costas C., Martinez-Costas J., Benavente J. 2005; Crystallization of the C-terminal globular domain of avian reovirus fibre. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:651–654
    [Google Scholar]
  43. Vriend G. 1990; what if: a molecular modeling and drug design program. J Mol Graph 8:52–56 [CrossRef]
    [Google Scholar]
  44. Zhang X., Tang J., Walker S. B., O'Hara D., Nibert M. L., Duncan R., Baker T. S. 2005; Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343:25–35 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008276-0
Loading
/content/journal/jgv/10.1099/vir.0.008276-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error