1887

Abstract

This study evaluated four polymorphisms located in the DC-SIGN () gene promoter region (positions −336, −332 −201 and −139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify SNPs, 452 bp of the promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that −336A and −139A SNPs were quite common in Asians and that the −201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the −336A variant was more frequent in HTLV-1-infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80 %; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218–5.179). In addition, the −139A allele was found to be associated with protection against HTLV-1 infection (=0.0037, OR=0.3758, 95 % CI=0.1954–0.7229) when the HTLV-1-infected patients as a whole were compared with the healthy-control group. These observations suggest that the −139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs −336 and −139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008367-0
2009-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/927.html?itemId=/content/journal/jgv/10.1099/vir.0.008367-0&mimeType=html&fmt=ahah

References

  1. Alvarez C. P., Lasala F., Carrillo J., Muñiz O., Corbí A. L., Delgado R. 2002; C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans . J Virol 76:6841–6844 [CrossRef]
    [Google Scholar]
  2. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252 [CrossRef]
    [Google Scholar]
  3. Barreiro L. B., Neyrolles O., Babb C. L., Tailleux L., Quach H., McElreavey K., Helden P. D., Hoal E. G., Gicquel B., Quintana-Murci L. 2006a; Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20 [CrossRef]
    [Google Scholar]
  4. Barreiro L. B., Quach H., Krahenbuhl J., Khaliq S., Mohyuddin A., Mehdi S. Q., Gicquel B., Neyrolles O., Quintana-Murci L. 2006b; DC-SIGN interacts with Mycobacterium leprae but sequence variation in this lectin is not associated with leprosy in the Pakistani population. Hum Immunol 67:102–107 [CrossRef]
    [Google Scholar]
  5. Barreiro L. B., Neyrolles O., Babb C. L., Van Helden P. D., Gicquel B., Hoal E. G., Quintana-Murci L. 2007; Length variation of DC-SIGN and L-SIGN neck-region has no impact on tuberculosis susceptibility. Hum Immunol 68:106–112 [CrossRef]
    [Google Scholar]
  6. Boily-Larouche G., Zijenah L. S., Mbizvo M., Ward B. J., Roger M. 2007; DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol 68:523–530 [CrossRef]
    [Google Scholar]
  7. Ceccaldi P. E., Delebecque F., Prevost M. C., Moris A., Abastado J. P., Gessain A., Schwartz O., Ozden S. 2006; DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 80:4771–4780 [CrossRef]
    [Google Scholar]
  8. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194
    [Google Scholar]
  9. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185 [CrossRef]
    [Google Scholar]
  10. Excoffier L., Slatkin M. 1995; Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927
    [Google Scholar]
  11. Excoffier L., Slatkin M. 1998; Incorporating genotypes of relatives into a test of linkage disequilibrium. Am J Hum Genet 62:171–180 [CrossRef]
    [Google Scholar]
  12. Excoffier L., Laval G., Schneider S. 2005; Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50
    [Google Scholar]
  13. Gessain A., Barin F., Vernant J. C., Gout O., Maurs L., Calender A., de Thé G. 1985; Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2:407–410
    [Google Scholar]
  14. Gómez L. M., Anaya J. M., Sierra-Filardi E., Cadena J., Corbí A., Martín J. 2006; Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol 67:808–811 [CrossRef]
    [Google Scholar]
  15. Guo S. W., Thompson E. A. 1992; Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372 [CrossRef]
    [Google Scholar]
  16. Halary F., Amara A., Lortat-Jacob H., Messerle M., Delaunay T., Houlès C., Fieschi F., Arenzana-Seisdedos F., Moreau J. F., Déchanet-Merville J. 2002; Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans -infection. Immunity 17:653–664 [CrossRef]
    [Google Scholar]
  17. Hinuma Y., Nagata K., Hanaoka M., Nakai M., Matsumoto T., Kinoshita K. I., Shirakawa S., Miyoshi I. 1981; Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A 78:6476–6480 [CrossRef]
    [Google Scholar]
  18. Jones K. S., Petrow-Sadowski C., Huang Y. K., Bertolette D. C., Ruscetti F. W. 2008; Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells. Nat Med 14:429–436 [CrossRef]
    [Google Scholar]
  19. Koizumi Y., Kageyama S., Fujiyama Y., Miyashita M., Lwembe R., Ogino K., Shioda T., Ichimura H. 2007; RANTES −28G delays and DC-SIGN −139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses 23:713–719 [CrossRef]
    [Google Scholar]
  20. LaGrenade L., Hanchard B., Fletcher V., Cranston B., Blattner W. 1990; Infective dermatitis of Jamaican children: a marker for HTLV-I infection. Lancet 336:1345–1347 [CrossRef]
    [Google Scholar]
  21. Marth G. T., Korf I., Yandell M. D., Yeh R. T., Gu Z., Zakeri H., Stitziel N. O., Hillier L., Kwok P. Y., Gish W. R. 1999; A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452–456 [CrossRef]
    [Google Scholar]
  22. Martin M. P., Lederman M. M., Hutcheson H. B., Goedert J. J., Nelson G. W., van kooyk Y., Detels R., Buchbinder S., Hoots K. other authors 2004; Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol 78:14053–14056 [CrossRef]
    [Google Scholar]
  23. Mochizuki M., Watanabe T., Yamaguchi K., Tajima K., Yoshimura K., Nakashima S., Shirao M., Araki S., Miyata N. other authors 1992; Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies. J Infect Dis 166:943–944 [CrossRef]
    [Google Scholar]
  24. Morgan O. S., Rodgers-Johnson P., Mora C., Char G. 1989; HTLV-1 and polymyositis in Jamaica. Lancet 2:1184–1187
    [Google Scholar]
  25. Nickerson D. A., Tobe V. O., Taylor S. L. 1997; PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751 [CrossRef]
    [Google Scholar]
  26. Núñez C., Rueda B., Martínez A., Maluenda C., Polanco I., López-Nevot M. A., Ortega E., Sierra E., Gómez de la Concha E. other authors 2006; A functional variant in the CD209 promoter is associated with DQ2-negative celiac disease in the Spanish population. World J Gastroenterol 12:4397–4400
    [Google Scholar]
  27. Olesen R., Wejse C., Velez D. R., Bisseye C., Sodemann M., Aaby P., Rabna P., Worwui A., Chapman H. other authors 2007; DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8:456–467 [CrossRef]
    [Google Scholar]
  28. Osame M., Usuku K., Izumo S., Ijichi N., Amitani H., Igata A., Matsumoto M., Tara M. 1986; HTLV-I associated myelopathy, a new clinical entity. Lancet 1:1031–1032
    [Google Scholar]
  29. Plancoulaine S., Gessain A., Tortevoye P., Boland-Auge A., Vasilescu A., Matsuda F., Abel L. 2006; A major susceptibility locus for HTLV-1 infection in childhood maps to chromosome 6q27. Hum Mol Genet 15:3306–3312 [CrossRef]
    [Google Scholar]
  30. Pociot F., Molvig J., Wogensen L., Worsaae H., Nerup J. 1992; A Taq I polymorphism in the human interleukin-1 β (IL-1 β ) gene correlates with IL-1 β secretion in vitro. Eur J Clin Invest 22:396–402 [CrossRef]
    [Google Scholar]
  31. Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C. 1980; Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77:7415–7419 [CrossRef]
    [Google Scholar]
  32. Raymond M., Rousset F. 1995a; GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249
    [Google Scholar]
  33. Raymond M., Rousset F. 1995b; An exact test for population differentiation. Evolution 49:1280–1283 [CrossRef]
    [Google Scholar]
  34. Sakuntabhai A., Turbpaiboon C., Casadémont I., Chuansumrit A., Lowhnoo T., Kajaste-Rudnitski A., Kalayanarooj S. M., Tangnararatchakit K., Tangthawornchaikul N. other authors 2005; A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513 [CrossRef]
    [Google Scholar]
  35. Soilleux E. J., Morris L. S., Leslie G., Chehimi J., Luo Q., Levroney E., Trowsdale J., Montaner L. J., Doms R. W. other authors 2002; Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71:445–457
    [Google Scholar]
  36. Stephens M., Smith N. J., Donnelly P. 2001; A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989 [CrossRef]
    [Google Scholar]
  37. Tailleux L., Schwartz O., Herrmann J. L., Pivert E., Jackson M., Amara A., Legres L., Dreher D., Nicod L. P. other authors 2003; DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127
    [Google Scholar]
  38. Tassaneetrithep B., Burgess T. H., Granelli-Piperno A., Trumpfheller C., Finke J., Sun W., Eller M. A., Pattanapanyasat K., Sarasombath S. other authors 2003; DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829 [CrossRef]
    [Google Scholar]
  39. Turner D. M., Williams D. M., Sankaran D., Lazarus M., Sinnott P. J., Hutchinson I. V. 1997; An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8 [CrossRef]
    [Google Scholar]
  40. Vannberg F. O., Chapman S. J., Khor C. C., Tosh K., Floyd S., Jackson-Sillah D., Crampin A., Sichali L., Bah B. other authors 2008; CD209 genetic polymorphism and tuberculosis disease. PLoS One 3:e1388 [CrossRef]
    [Google Scholar]
  41. Wichukchinda N., Kitamura Y., Rojanawiwat A., Nakayama E. E., Song H., Pathipvanich P., Auwanit W., Sawanpanyalert P., Iwamoto A. other authors 2007; The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection. AIDS Res Hum Retroviruses 23:686–692 [CrossRef]
    [Google Scholar]
  42. Yoshida M., Miyoshi I., Hinuma Y. 1982; Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A 79:2031–2035 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008367-0
Loading
/content/journal/jgv/10.1099/vir.0.008367-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error