1887

Abstract

Molecular methods, based on sequencing the region encoding the VP1 major capsid protein, have recently become the gold standard for enterovirus typing. In the most commonly used scheme, sequences more than 75 % identical (>85 % amino acid identity) in complete or partial VP1 sequence are considered to represent the same type. However, as sequence data have accumulated, it has become clear that the ‘75 %/85 % rule’ may not be universally applicable. To address this issue, we have determined nucleotide sequences for the complete P1 capsid region of a collection of 53 isolates from the species (HEV-C), comparing them with each other and with those of 20 reference strains. Pairwise identities, similarity plots and phylogenetic reconstructions identified three potential new enterovirus types, EV96, EV99 and EV102. When pairwise sequence comparisons were considered in aggregate, there was overlap in percentage identity between comparisons of homotypic strains and heterotypic strains. In particular, the differences between coxsackievirus (CV) A13 and CVA17, CVA24 and EV99, and CVA20 and EV102 were difficult to discern, largely because of intratypic sequence diversity. Closer inspection revealed the minimum intratypic values and maximum intratypic values varied by type, suggesting that the rules were at least consistent within a type. By plotting VP1 amino acid identity vs nucleotide identity for each sequence pair and considering each type separately, members of each type were fully resolved from those of other types. This study suggests that a more stringent value of 88 % VP1 amino acid identity is more appropriate for routine typing and that other criteria may need to be applied, on a case by case basis, where lower values are seen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008540-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1713.html?itemId=/content/journal/jgv/10.1099/vir.0.008540-0&mimeType=html&fmt=ahah

References

  1. Arita M., Zhu S.-L., Yoshida H., Yoneyama T., Miyamura T., Shimizu H. 2005; A Sabin 3-derived poliovirus recombinant contained a sequence homologous with indigenous human enterovirus species C in the viral polymerase coding region. J Virol 79:12650–12657 [CrossRef]
    [Google Scholar]
  2. Bailly J. L., Cardoso M.-C., Labbé A., Peigue-Lafeuille H. 2004; Isolation and identification of an enterovirus 77 recovered from a refugee child from Kosovo, and characterization of the complete virus genome. Virus Res 99:147–155 [CrossRef]
    [Google Scholar]
  3. Behbehani A. M., Lee L. H., Melnick J. L. 1964; Identification of Thai C-18 virus as a member of the coxsackievirus A20 subgroup. Proc Soc Exp Biol Med 116:661–662 [CrossRef]
    [Google Scholar]
  4. Bingjun T., Yoshida H., Yan W., Lin L., Tsuji T., Shimizu H., Miyamura T. 2008; Molecular typing and epidemiology of non-polio enteroviruses isolated from Yunnan Province, the People's Republic of China. J Med Virol 80:670–679 [CrossRef]
    [Google Scholar]
  5. Brown B., Oberste M. S., Maher K., Pallansch M. A. 2003; Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77:8973–8984 [CrossRef]
    [Google Scholar]
  6. Caro V., Guillot S., Delpeyroux F., Crainic R. 2001; Molecular strategy for ‘serotyping’ of human enteroviruses. J Gen Virol 82:79–91
    [Google Scholar]
  7. Casas I., Palacios G. F., Trallero G., Cisterna D., Freire M. C., Tenorio A. 2001; Molecular characterization of human enteroviruses in clinical samples: comparison between VP2, VP1, and RNA polymerase regions using RT nested PCR assays and direct sequencing of products. J Med Virol 65:138–148 [CrossRef]
    [Google Scholar]
  8. Dalldorf G., Sickles G. M. 1956; The coxsackie viruses. In Diagnostic Procedures for Virus and Rickettsial Diseases . , 2nd edn. pp 153–168Edited by Lennette E. H., Schmidt N. J. New York: American Public Health Association;
  9. Dayhoff M., Schwartz R., Orcutt B. 1979 Atlas of Protein Sequence and Structure Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  10. Grandien M., Forsgren M., Erhrnst A. 1995; Enteroviruses. In Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections . , 7th edn. pp 279–297Edited by Lennette E. H., Lennette D. A., Lennette E. T. Washington, DC: American Public Health Association;
  11. Jorba J., Campagnoli R., De L., Kew O. 2008; Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J Virol 82:4429–4440 [CrossRef]
    [Google Scholar]
  12. Junttila N., Leveque N., Kabue J. P., Cartet G., Mushiya F., Muyembe-Tamfum J. J., Trompette A., Lina B., Magnius L. O. other authors 2007; New enteroviruses, EV-93 and EV-94, associated with acute flaccid paralysis in the Democratic Republic of the Congo. J Med Virol 79:393–400 [CrossRef]
    [Google Scholar]
  13. Khetsuriani N., Quiroz E. S., Holman R. C., Anderson L. J. 2003; Viral meningitis-associated hospitalizations in the United States, 1988–1999. Neuroepidemiology 22:345–352 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Knowles N. J. 2006 The picornavirus home page Pirbright/Woking, UK: Institute for Animal Health, Pirbright Laboratory; http://www.picornaviridae.com/
    [Google Scholar]
  16. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  17. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160
    [Google Scholar]
  18. Melnick J. L. 1996; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields’ Virology, 3rd edn. pp 655–712Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott–Raven;
    [Google Scholar]
  19. Melnick J. L., Hampil B. 1965; WHO collaborative studies on enterovirus reference antisera. Bull World Health Organ 33:761–772
    [Google Scholar]
  20. Melnick J. L., Wenner H. A., Phillips C. A. 1979; Enteroviruses. In Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections . , 5th edn. pp 471–534Edited by Lennette E. H., Schmidt N. J. Washington, DC: American Public Health Association;
  21. Mirkovic R. R., Schmidt N. J., Yin-Murphy M., Melnick J. L. 1974; Enterovirus etiology of the 1970 Singapore epidemic of acute conjunctivitis. Intervirology 4:119–127
    [Google Scholar]
  22. Norder H., Bjerregaard L., Magnius L. O. 2001; Homotypic echoviruses share aminoterminal VP1 sequence homology applicable for typing. J Med Virol 63:35–44 [CrossRef]
    [Google Scholar]
  23. Norder H., Bjerregaard L., Magnius L., Lina B., Aymard M., Chomel J. J. 2003; Sequencing of ‘untypable’ enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. J Gen Virol 84:827–836 [CrossRef]
    [Google Scholar]
  24. Oberste M. S., Pallansch M. A. 2005; Enterovirus molecular detection and typing. Rev Med Microbiol 16:163–171 [CrossRef]
    [Google Scholar]
  25. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999a; Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37:1288–1293
    [Google Scholar]
  26. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999b; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948
    [Google Scholar]
  27. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38:1170–1174
    [Google Scholar]
  28. Oberste M. S., Schnurr D., Maher K., al-Busaidy S., Pallansch M. A. 2001; Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82:409–416
    [Google Scholar]
  29. Oberste M. S., Maher K., Pallansch M. A. 2002; Molecular phylogeny and proposed classification of the simian picornaviruses. J Virol 76:1244–1251 [CrossRef]
    [Google Scholar]
  30. Oberste M. S., Nix W. A., Maher K., Pallansch M. A. 2003; Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26:375–377 [CrossRef]
    [Google Scholar]
  31. Oberste M. S., Maher K., Pallansch M. A. 2004a; Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78:855–867 [CrossRef]
    [Google Scholar]
  32. Oberste M. S., Maher K., Schnurr D., Flemister M. R., Lovchik J. C., Peters H., Sessions W., Kirk C., Chatterjee N. & other authors (2004b). Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J Gen Virol 85:2577–2584 [CrossRef]
    [Google Scholar]
  33. Oberste M. S., Michele S. M., Maher K., Schnurr D., Cisterna D., Junttila N., Uddin M., Chomel J. J., Lau C. S. other authors 2004c; Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75. J Gen Virol 85:3205–3212 [CrossRef]
    [Google Scholar]
  34. Oberste M. S., Penaranda S., Maher K., Pallansch M. A. 2004d; Complete genome sequences of all members of the species Human enterovirus A . J Gen Virol 85:1597–1607 [CrossRef]
    [Google Scholar]
  35. Oberste M. S., Penaranda S., Pallansch M. A. 2004e; RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J Virol 78:2948–2955 [CrossRef]
    [Google Scholar]
  36. Oberste M. S., Maher K., Michele S. M., Belliot G., Uddin M., Pallansch M. A. 2005; Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A . J Gen Virol 86:445–451 [CrossRef]
    [Google Scholar]
  37. Oberste M. S., Maher K., Williams A. J., Dybdahl-Sissoko N., Brown B. A., Gookin M. S., Penaranda S., Mishrik N., Uddin M., Pallansch M. A. 2006; Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol 87:119–128 [CrossRef]
    [Google Scholar]
  38. Oberste M. S., Maher K., Nix W. A., Michele S. M., Uddin M., Schnurr D., al-Busaidy S., Akoua-Koffi C., Pallansch M. A. 2007a; Molecular identification of 13 new enterovirus types, EV79–88, EV97, and EV100–101, members of the species Human enterovirus B . Virus Res 128:34–42 [CrossRef]
    [Google Scholar]
  39. Oberste M. S., Maher K., Pallansch M. A. 2007b; Complete genome sequences for nine simian enteroviruses. J Gen Virol 88:3360–3372 [CrossRef]
    [Google Scholar]
  40. Pallansch M. A., Roos R. P. 2001; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology , 4th edn. pp 723–775Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  41. Rakoto-Andrianarivelo M., Rousset D., Razafindratsimandresy R., Chevaliez S., Guillot S., Balanant J., Delpeyroux F. 2005; High frequency of human enterovirus species C circulation in Madagascar. J Clin Microbiol 43:242–249 [CrossRef]
    [Google Scholar]
  42. Rakoto-Andrianarivelo M., Guillot S., Iber J., Balanant J., Blondel B., Riquet F., Martin J., Kew O. M., Randriamanalina B. other authors 2007; Co-circulation and evolution of polioviruses and species C enteroviruses in a district of Madagascar. PLoS Pathog 3:e191 [CrossRef]
    [Google Scholar]
  43. Rosen L., Melnick J. L., Schmidt J., Wenner H. A. 1970; Subclassification of enteroviruses and ECHO virus type 34. Brief report. Arch Gesamte Virusforsch 30:89–92 [CrossRef]
    [Google Scholar]
  44. Schmidt N. J., Lennette E. H., Ho H. H. 1966; Observations on antigenic variants of echovirus type 11. Proc Soc Exp Biol Med 123:696–700 [CrossRef]
    [Google Scholar]
  45. Smura T., Blomqvist S., Paananen A., Vuorinen T., Sobotova Z., Bubovica V., Ivanova O., Hovi T., Roivainen M. 2007a; Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5′-untranslated region evolution. J Gen Virol 88:2520–2526 [CrossRef]
    [Google Scholar]
  46. Smura T. P., Junttila N., Blomqvist S., Norder H., Kaijalainen S., Paananen A., Magnius L. O., Hovi T., Roivainen M. 2007b; Enterovirus 94, a proposed new serotype in human enterovirus species D. J Gen Virol 88:849–858 [CrossRef]
    [Google Scholar]
  47. Stanway G., Brown F., Christian P., Hovi T., Hyypiä T., King A. M. Q., Knowles N. J., Lemon S. M., Minor P. D. other authors 2005; Picornaviridae . In Virus Taxonomy: Eighth report of the International Committee on the Taxonomy of Viruses pp 757–778Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger L. A., Ball U. Amsterdam: Elsevier Academic Press;
    [Google Scholar]
  48. World Health Organization 1968 The Work of WHO Virus Reference Centres and the Services they Provide p– 11 Geneva: World Health Organization;
    [Google Scholar]
  49. World Health Organization 2001 Manual for the Virological Investigation of Polio Geneva: World Health Organization;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008540-0
Loading
/content/journal/jgv/10.1099/vir.0.008540-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error