1887

Abstract

Cytotoxic T cells are important in controlling herpes simplex virus type 2 (HSV-2) reactivation and peripheral lesion resolution. Humans latently infected with HSV-2 have cytotoxic T cells directed against epitopes present in tegument proteins. Studies in mice of immunity to HSV have commonly focused on immunodominant responses in HSV envelope glycoproteins. These antigens have not proved to be an effective prophylactic vaccine target for most of the human population. The murine immune response against HSV tegument proteins has not been explored. We analysed cellular responses in BALB/c mice directed against the tegument proteins encoded by and and against the envelope glycoprotein gD after DNA vaccination or HSV-2 infection. After DNA vaccination, the splenocyte T-cell response to overlapping peptides from and was more than 500 gamma interferon spot-forming units per 10 responder cells. Peptide truncation studies, responder cell fractionation and major histocompatibility complex binding studies identified several CD8 and CD4 epitopes. Cellular responses to tegument protein epitopes were also detected after HSV-2 infection. Tegument proteins are rational candidates for further HSV-2 vaccine research.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008771-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1153.html?itemId=/content/journal/jgv/10.1099/vir.0.008771-0&mimeType=html&fmt=ahah

References

  1. Ashley R. L., Militoni J., Lee F., Nahmias A., Corey L. 1988; Comparison of Western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol 26:662–667
    [Google Scholar]
  2. Banks T. A., Nair S., Rouse B. T. 1993; Recognition by and in vitro induction of cytotoxic T lymphocytes against predicted epitopes of the immediate-early protein ICP27 of herpes simplex virus. J Virol 67:613–616
    [Google Scholar]
  3. Betts M. R., Price D. A., Brenchley J. M., Loré K., Guenaga F. J., Smed-Sorensen A., Ambrozak D. R., Migueles S. A., Connors M. other authors 2004; The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 172:6407–6417 [CrossRef]
    [Google Scholar]
  4. Blaney J. E. Jr, Nobusawa E., Brehm M. A., Bonneau R. H., Mylin L. M., Fu T. M., Kawaoka Y., Tevethia S. S. 1998; Immunization with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J Virol 72:9567–9574
    [Google Scholar]
  5. Bui H. H., Sidney J., Peters B., Sathiamurthy M., Sinichi A., Purton K. A., Mothé B. R., Chisari F. V., Watkins D. I., Sette A. 2005; Automated generation and evaluation of specific MHC binding predictive tools: arb matrix applications. Immunogenetics 57:304–314 [CrossRef]
    [Google Scholar]
  6. Corey L., Langenberg A., Ashley R., Sekulovich R., Izu A., Douglas J. J., Handsfield H., Warren T., Marr L. other authors 1999; Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282:331–340
    [Google Scholar]
  7. Dolan A., Jamieson F., Cunningham C., Barnett B., McGeoch D. 1998; The genome sequence of herpes simplex virus type 2. J Virol 72:2010–2021
    [Google Scholar]
  8. Gierynska M., Kumaraguru U., Eo S.-K., Lee S., Krieg A., Rouse B. 2002; Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J Virol 76:6568–6576 [CrossRef]
    [Google Scholar]
  9. Hartikka J., Sawdey M., Cornefert-Jensen F., Margalith M., Barnhart K., Nolasco M., Vahlsing H., Meek J., Marquet M. other authors 1996; An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 7:1205–1217 [CrossRef]
    [Google Scholar]
  10. Haynes J. R., Arrington J., Dong L., Braun R. P., Payne L. G. 2006; Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat labile enterotoxin. Vaccine 24:5016–5026 [CrossRef]
    [Google Scholar]
  11. Higgins T. J., Herold K. M., Arnold R. L., McElhiney S. P., Shroff K. E., Pachuk C. J. 2000; Plasmid DNA-expressed secreted and nonsecreted forms of herpes simplex virus glycoprotein D2 induce different types of immune responses. J Infect Dis 182:1311–1320 [CrossRef]
    [Google Scholar]
  12. Hosken N., McGowan P., Meier A., Koelle D., Sleath P., Wagener F., Elliott M., Grabstein K., Posavad C., Corey L. 2006; Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol 80:5509–5515 [CrossRef]
    [Google Scholar]
  13. Khanna K. M., Bonneau R. H., Kinchington P. R., Hendricks R. L. 2003; Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603 [CrossRef]
    [Google Scholar]
  14. Kiecker F., Streitz M., Ay B., Cherepnev G., Volk H., Volkmer-Engert R., Kern F. 2004; Analysis of antigen-specific T-cell responses with synthetic peptides – what kind of peptide for which purpose?. Hum Immunol 65:523–536 [CrossRef]
    [Google Scholar]
  15. Kimberlin D. W. 2004; Neonatal herpes simplex infection. Clin Microbiol Rev 17:1–13 [CrossRef]
    [Google Scholar]
  16. Kimberlin D. W. 2005; Herpes simplex virus infections in neonates and early childhood. Semin Pediatr Infect Dis 16:271–281 [CrossRef]
    [Google Scholar]
  17. Klinman D. 2008; Unit 6.19. ELISPOT assay to detect cytokine-secreting murine and human cells. In Current Protocols in Immunology pp. 6.19.1–6.19.9Edited by Coligan J. E., Bierer B., Margulies D. H., Shevach E. M., Strober W., Coico R. New York: Wiley;
    [Google Scholar]
  18. Koelle D. M. 2003; Expression cloning for the discovery of viral antigens and epitopes recognized by T cells. Methods 29:213–226 [CrossRef]
    [Google Scholar]
  19. Koelle D. M., Corey L. 2003; Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 16:96–113 [CrossRef]
    [Google Scholar]
  20. Koelle D. M., Tigges M. A., Burke R. L., Symington F. W., Riddell S. R., Abbo H., Corey L. 1993; Herpes simplex virus infection of human fibroblasts and keratinocytes inhibits recognition by cloned CD8+ cytotoxic T lymphocytes. J Clin Invest 91:961–968 [CrossRef]
    [Google Scholar]
  21. Koelle D. M., Frank J. M., Johnson M. L., Kwok W. W. 1998a; Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J Virol 72:7476–7483
    [Google Scholar]
  22. Koelle D. M., Posavad C. M., Barnum G. R., Johnson M. L., Frank J. M., Corey L. 1998b; Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J Clin Invest 101:1500–1508 [CrossRef]
    [Google Scholar]
  23. Koelle D. M., Reymond S. M., Chen H., Kwok W. W., McClurkan C., Gyaltsong T., Petersdorf E. W., Rotkis W., Talley A. R., Harrison D. A. 2000a; Tegument-specific, virus-reactive CD4 T cells localize to the cornea in herpes simplex virus interstitial keratitis in humans. J Virol 74:10930–10938 [CrossRef]
    [Google Scholar]
  24. Koelle D. M., Schomogyi M., McClurkan C., Reymond S. N., Chen H. B. 2000b; CD4 T-cell responses to herpes simplex virus type 2 major capsid protein VP5: comparison with responses to tegument and envelope glycoproteins. J Virol 74:11422–11425 [CrossRef]
    [Google Scholar]
  25. Koelle D. M., Chen H. B., Gavin M. A., Wald A., Kwok W. W., Corey L. 2001; CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J Immunol 166:4049–4058 [CrossRef]
    [Google Scholar]
  26. Koelle D. M., Liu Z., McClurkan C. M., Topp M. S., Riddell S. R., Pamer E. G., Johnson A. S., Wald A., Corey L. 2002; Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J Clin Invest 110:537–548 [CrossRef]
    [Google Scholar]
  27. Koelle D. M., Liu Z., McClurkan C. L., Cevallos R. C., Vieira J., Hosken N. A., Meseda C. A., Snow D. C., Wald A., Corey L. 2003; Immunodominance among herpes simplex virus-specific CD8 T cells expressing a tissue-specific homing receptor. Proc Natl Acad Sci U S A 100:12899 [CrossRef]
    [Google Scholar]
  28. Kumaraguru U., Gierynska M., Norman S., Bruce B., Rouse B. 2002; Immunization with chaperone–peptide complex induces low-avidity cytotoxic T lymphocytes providing transient protection against herpes simplex virus infection. J Virol 76:136–141 [CrossRef]
    [Google Scholar]
  29. Lopez C. 1975; Genetics of natural resistance to herpesvirus infections in mice. Nature 258:152–153 [CrossRef]
    [Google Scholar]
  30. Maecker H. T., Dunn H. S., Suni M. A., Khatamzas E., Pitcher C. J., Bunde T., Persaud N., Trigona W., Fu T. M. other authors 2001; Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255:27–40 [CrossRef]
    [Google Scholar]
  31. Mashishi T., Gray C. M. 2002; The ELISPOT assay: an easily transferable method for measuring cellular responses and identifying T cell epitopes. Clin Chem Lab Med 40:903–910
    [Google Scholar]
  32. McDermott M. R., Smiley J. R., Leslie P., Brais J., Rudzroga H. E., Bienenstock J. 1984; Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. J Virol 51:747–753
    [Google Scholar]
  33. Milligan G. N., Bernstein D. I. 1995; Generation of humoral immune responses against herpes simplex virus type 2 in the murine female genital tract. Virology 206:234–241 [CrossRef]
    [Google Scholar]
  34. Northrop J. K., Shen H. 2004; CD8+ T-cell memory: only the good ones last. Curr Opin Immunol 16:451–455 [CrossRef]
    [Google Scholar]
  35. Orr M. T., Orgun N. N., Wilson C. B., Way S. S. 2007; Recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection. J Immunol 178:4731–4735 [CrossRef]
    [Google Scholar]
  36. Parker K. C., Bednarek M. A., Coligan J. E. 1994; Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175
    [Google Scholar]
  37. Parr M. B., Kepple L., McDermott M. R., Drew M. D., Bozzola J. J., Parr E. L. 1994; A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Lab Invest 70:369–380
    [Google Scholar]
  38. Posavad C. M., Koelle D. M., Shaughnessy M. F., Corey L. 1997; Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus-specific CD8+ cytotoxic T lymphocyte responses. Proc Natl Acad Sci U S A 94:10289–10294 [CrossRef]
    [Google Scholar]
  39. Posavad C. M., Wald A., Hosken N., Huang M. L., Koelle D. M., Ashley R. L., Corey L. 2003; T cell immunity to herpes simplex viruses in seronegative subjects: silent infection or acquired immunity?. J Immunol 170:4380–4388 [CrossRef]
    [Google Scholar]
  40. Rammensee H., Bachmann J., Emmerich N., Bachor O., Stevanović S. 1999; SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219 [CrossRef]
    [Google Scholar]
  41. Sidney J., Southwood S., Oseroff C., Del Guercio M., Sette A., Grey H. 1998; Measurement of MHC/peptide interactions by gel filtration. In Current Protocols in Immunology pp. 18.3.11–18.3.19Edited by Coligan J. E., Bierer B., Margulies D. H., Shevach E. M., Strober W., Coico. New York: Wiley;
    [Google Scholar]
  42. Stanberry L. R., Kit S., Myers M. G. 1985; Thymidine kinase-deficient herpes simplex virus type 2 genital infection in guinea pigs. J Virol 55:322–328
    [Google Scholar]
  43. Stanberry L. R., Spruance S. L., Cunningham A. L., Bernstein D. I., Mindel A., Sacks S., Tyring S., Aoki F. Y., Slaoui M. other authors 2002; Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med 347:1652–1661 [CrossRef]
    [Google Scholar]
  44. Stock A. T., Jones C. M., Heath W. R., Carbone F. R. 2006; CTL response compensation for the loss of an immunodominant class I-restricted HSV-1 determinant. Immunol Cell Biol 84:543–550 [CrossRef]
    [Google Scholar]
  45. Straus S. F., Corey L., Burke R. L., Savarese B., Barnum G., Krause P. R., Kost R. G., Meier J. L., Sekulovich R. other authors 1994; Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet 343:1460–1463 [CrossRef]
    [Google Scholar]
  46. Terhune S. S., Coleman K. T., Sekulovich R., Burke R. L., Spear P. G. 1998; Limited variability of glycoprotein gene sequences and neutralizing targets in herpes simplex virus type 2 isolates and stability on passage in cell culture. J Infect Dis 178:8–15 [CrossRef]
    [Google Scholar]
  47. Todd C. W., Pozzi L. A., Guarnaccia J. R., Balasubramanian M., Henk W. G., Younger L. E., Newman M. J. 1997; Development of an adjuvant-active nonionic block copolymer for use in oil-free subunit vaccines formulations. Vaccine 15:564–570 [CrossRef]
    [Google Scholar]
  48. Tscharke D. C., Karupiah G., Zhou J., Palmore T., Irvine K. R., Haeryfar S. M., Williams S., Sidney J., Sette A. other authors 2005; Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104 [CrossRef]
    [Google Scholar]
  49. Verjans G. M., Dings M. M., McLauchlan J., van Der Kooi A., Hoogerhout P., Brugghe H. F., Timmermans H. A., Baarsma G. S., Osterhaus A. D. 2000; Intraocular T cells of patients with herpes simplex virus (HSV)-induced acute retinal necrosis recognize HSV tegument proteins VP11/12 and VP13/14. J Infect Dis 182:923–927 [CrossRef]
    [Google Scholar]
  50. Verjans G. M., Hintzen R. Q., van Dun J. M., Poot A., Milikan J. C., Laman J. D., Langerak A. W., Kinchington P. R., Osterhaus A. D. 2007; Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 104:3496–3501 [CrossRef]
    [Google Scholar]
  51. Waldrop S. L., Pitcher C. J., Peterson D. M., Maino V. C., Picker L. J. 1997; Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 99:1739–1750 [CrossRef]
    [Google Scholar]
  52. Wallace M. E., Keating R., Heath W. R., Carbone F. R. 1999; The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73:7619–7626
    [Google Scholar]
  53. Watson R. J. 1983; DNA sequence of the herpes simplex virus type 2 glycoprotein D gene. Gene 26:307–312 [CrossRef]
    [Google Scholar]
  54. Xu F., Sternberg M., Kottiri B., McQuillan G., Lee F., Nahmias A., Berman S., Markowitz L. 2006; Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973 [CrossRef]
    [Google Scholar]
  55. Zhu J., Koelle D. M., Cao J., Vazquez J., Huang M. L., Hladik F., Wald A., Corey L. 2007; Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008771-0
Loading
/content/journal/jgv/10.1099/vir.0.008771-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error