1887

Abstract

Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP) and abnormal (PrP) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP, leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP, accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP species converts into the highly proteinase K-resistant PrP. In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP from the natural promoter, proteasomal impairment may affect both the process of PrP biosynthesis and the subcellular sites of PrP accumulation, despite the fact that these two effects could essentially be disconnected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010082-0
2009-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/2050.html?itemId=/content/journal/jgv/10.1099/vir.0.010082-0&mimeType=html&fmt=ahah

References

  1. Aguzzi A., Baumann F., Bremer J. 2008; The prion's elusive reason for being. Annu Rev Neurosci 31:439–477 [CrossRef]
    [Google Scholar]
  2. Ashok A., Hegde R. S. 2008; Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol Biol Cell 19:3463–3476 [CrossRef]
    [Google Scholar]
  3. Barmada S. J., Harris D. A. 2005; Visualization of prion infection in transgenic mice expressing green fluorescent protein-tagged prion protein. J Neurosci 25:5824–5832 [CrossRef]
    [Google Scholar]
  4. Beringue V., Vilette D., Mallinson G., Archer F., Kaisar M., Tayebi M., Jackson G. S., Clarke A. R., Laude H. other authors 2004; PrPSc binding antibodies are potent inhibitors of prion replication in cell lines. J Biol Chem 279:39671–39676 [CrossRef]
    [Google Scholar]
  5. Campana V., Sarnataro D., Zurzolo C. 2005; The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111 [CrossRef]
    [Google Scholar]
  6. Cohen E., Taraboulos A. 2003; Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 22:404–417 [CrossRef]
    [Google Scholar]
  7. Cronier S., Laude H., Peyrin J. M. 2004; Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci U S A 101:12271–12276 [CrossRef]
    [Google Scholar]
  8. Dandoy-Dron F., Griffond B., Mishal Z., Tovey M. G., Dron M. 2003; Scrg1, a novel protein of the CNS is targeted to the large dense-core vesicles in neuronal cells. Eur J Neurosci 18:2449–2459 [CrossRef]
    [Google Scholar]
  9. Dandoy-Dron F., Bogdanova A., Beringue V., Bailly Y., Tovey M. G., Laude H., Dron M. 2006; Infection by ME7 prion is not modified in transgenic mice expressing the yeast chaperone Hsp104 in neurons. Neurosci Lett 405:181–185 [CrossRef]
    [Google Scholar]
  10. Deriziotis P., Tabrizi S. J. 2008; Prions and the proteasome. Biochim Biophys Acta 1782:713–722 [CrossRef]
    [Google Scholar]
  11. Drisaldi B., Stewart R. S., Adles C., Stewart L. R., Quaglio E., Biasini E., Fioriti L., Chiesa R., Harris D. A. 2003; Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 278:21732–21743 [CrossRef]
    [Google Scholar]
  12. Dupiereux I., Zorzi W., Lins L., Brasseur R., Colson P., Heinen E., Elmoualij B. 2005; Interaction of the 106–126 prion peptide with lipid membranes and potential implication for neurotoxicity. Biochem Biophys Res Commun 331:894–901 [CrossRef]
    [Google Scholar]
  13. Féraudet C., Morel N., Simon S., Volland H., Frobert Y., Créminon C., Vilette D., Lehmann S., Grassi J. 2005; Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280:11247–11258 [CrossRef]
    [Google Scholar]
  14. Fioriti L., Dossena S., Stewart L. R., Stewart R. S., Harris D. A., Forloni G., Chiesa R. 2005; Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations. J Biol Chem 280:11320–11328 [CrossRef]
    [Google Scholar]
  15. García-Mata R., Bebök Z., Sorscher E. J., Sztul E. S. 1999; Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254 [CrossRef]
    [Google Scholar]
  16. García-Mata R., Gao Y. S., Sztul E. 2002; Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396 [CrossRef]
    [Google Scholar]
  17. Goggin K., Beaudoin S., Grenier C., Brown A.-A., Roucou X. 2008; Prion protein aggresomes are poly(A)+ ribonucleoprotein complexes that induce a PKR-mediated deficient cell stress response. Biochim Biophys Acta 1783479–491 [CrossRef]
    [Google Scholar]
  18. Grenier C., Bissonnette C., Volkov L., Roucou X. 2006; Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem 97:1456–1466 [CrossRef]
    [Google Scholar]
  19. Khalili-Shirazi A., Summers L., Linehan J., Mallinson G., Anstee D., Hawke S., Jackson G. S., Collinge J. 2005; PrP glycoforms are associated in a strain-specific ratio in native PrPSc . J Gen Virol 86:2635–2644 [CrossRef]
    [Google Scholar]
  20. Khalili-Shirazi A., Kaisar M., Mallinson G., Jones S., Bhelt D., Fraser C., Clarke A. R., Hawke S. H., Jackson G. S. other authors 2007; β -PrP form of human prion protein stimulates production of monoclonal antibodies to epitope 91–110 that recognise native PrPSc . Biochim Biophys Acta 17741438–1450 [CrossRef]
    [Google Scholar]
  21. Kristiansen M., Messenger M. J., Klohn P. C., Brandner S., Wadsworth J. D., Collinge J., Tabrizi S. J. 2005; Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. J Biol Chem 280:38851–38861 [CrossRef]
    [Google Scholar]
  22. Kristiansen M., Deriziotis P., Dimcheff D. E., Jackson G. S., Ovaa H., Naumann H., Clarke A. R., van Leeuwen F. W., Menéndez-Benito V. other authors 2007; Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26:175–188 [CrossRef]
    [Google Scholar]
  23. Lehmann S., Harris D. A. 1995; A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J Biol Chem 270:24589–24597 [CrossRef]
    [Google Scholar]
  24. Ma J., Lindquist S. 1999; De novo generation of a PrPSc-like conformation in living cells. Nat Cell Biol 1:358–361 [CrossRef]
    [Google Scholar]
  25. Ma J., Lindquist S. 2001; Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98:14955–14960 [CrossRef]
    [Google Scholar]
  26. Ma J., Lindquist S. 2002; Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298:1785–1788 [CrossRef]
    [Google Scholar]
  27. Ma J., Wollmann R., Lindquist S. 2002; Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298:1781–1785 [CrossRef]
    [Google Scholar]
  28. Mahal S. P., Baker C. A., Demczyk C. A., Smith E. W., Julius C., Weissmann C. 2007; Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci U S A 104:20908–20913 [CrossRef]
    [Google Scholar]
  29. Mangé A., Crozet C., Lehmann S., Béranger F. 2004; Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin. J Cell Sci 117:2411–2416 [CrossRef]
    [Google Scholar]
  30. Mironov A. Jr, Latawiec D., Wille H., Bouzamondo-Bernstein E., Legname G., Williamson R. A., Burton D., DeArmond S. J., Prusiner S. B., Peters P. J. 2003; Cytosolic prion protein in neurons. J Neurosci 23:7183–7193
    [Google Scholar]
  31. Mishra R. S., Bose S., Gu Y., Li R., Singh N. 2003; Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders. J Alzheimers Dis 5:15–23
    [Google Scholar]
  32. Paquet S., Langevin C., Chapuis J., Jackson G. S., Laude H., Vilette D. 2007; Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88:706–713 [CrossRef]
    [Google Scholar]
  33. Pillot T., Lins L., Goethals M., Vanloo B., Baert J., Vandekerckhov J., Rosseneu M., Brasseur R. 1997; The 118–135 peptide of the human prion protein forms amyloid fibrils and induces liposome fusion. J Mol Biol 274:381–393 [CrossRef]
    [Google Scholar]
  34. Prusiner S. B. 1998; Prions. Proc Natl Acad Sci U S A 95:13363–13383 [CrossRef]
    [Google Scholar]
  35. Qi Y., Wang J. K., McMillian M., Chikaraishi D. M. 1997; Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J Neurosci 17:1217–1225
    [Google Scholar]
  36. Rane N. S., Yonkovich J. L., Hegde R. S. 2004; Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J 23:4550–4559 [CrossRef]
    [Google Scholar]
  37. Ren P.-H., Lauckner J. E., Kachirskaia I., Heuser J. E., Melki R., Kopito R. R. 2009; Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225 [CrossRef]
    [Google Scholar]
  38. Roucou X., Guo Q., Zhang Y., Goodyer C. G., LeBlanc A. C. 2003; Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J Biol Chem 278:40877–40881 [CrossRef]
    [Google Scholar]
  39. Scott M. R., Köhler R., Foster D., Prusiner S. B. 1992; Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci 1:986–997 [CrossRef]
    [Google Scholar]
  40. Singh N., Gu Y., Bose S., Basu S., Luo X., Mishra R., Kuruvilla O. 2005; Processing and mis-processing of the prion protein: insights into the pathogenesis of familial prion disorders. In Neurodegeneration and Prion Disease pp 299–318Edited by Brown D. New York: Life Sciences, Springer;
    [Google Scholar]
  41. Stewart R. S., Harris D. A. 2003; Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem 278:45960–45968 [CrossRef]
    [Google Scholar]
  42. Stewart R. S., Drisaldi B., Harris D. A. 2001; A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 12:881–889 [CrossRef]
    [Google Scholar]
  43. Veith N. M., Plattner H., Stuermer C. A., Schulz-Schaeffer W. J., Bürkle A. 2009; Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. Eur J Cell Biol 88:45–63 [CrossRef]
    [Google Scholar]
  44. Viegas P., Chaverot N., Enslen H., Perrière N., Couraud P. O., Cazaubon S. 2006; Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes. J Cell Sci 119:4634–4643 [CrossRef]
    [Google Scholar]
  45. Wang H., Oxford G. S. 2000; Voltage-dependent ion channels in CAD cells: a catecholaminergic neuronal line that exhibits inducible differentiation. J Neurophysiol 84:2888–2895
    [Google Scholar]
  46. Wang X., Wang F., Sy M. S., Ma J. 2005; Calpain and other cytosolic proteases can contribute to the degradation of retro-translocated prion protein in the cytosol. J Biol Chem 280:317–325 [CrossRef]
    [Google Scholar]
  47. Wang X., Wang F., Arterburn L., Wollmann R., Ma J. 2006; The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J Biol Chem 281:13559–13565 [CrossRef]
    [Google Scholar]
  48. Yedidia Y., Horonchik L., Tzaban S., Yanai A., Taraboulos A. 2001; Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20:5383–5391 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010082-0
Loading
/content/journal/jgv/10.1099/vir.0.010082-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error