1887

Abstract

The genus within the family comprises three closely related viruses, namely goat pox, sheep pox and lumpy skin disease viruses. This nomenclature is based on the animal species from which the virus was first isolated, respectively, goat, sheep and cattle. Since capripoxviruses are serologically identical, their specific identification relies exclusively on the use of molecular tools. We describe here the suitability of the G-proteincoupled chemokine receptor (GPCR) gene for use in host-range grouping of capripoxviruses. The analysis of 58 capripoxviruses showed three tight genetic clusters consisting of goat pox, sheep pox and lumpy skin disease viruses. However, a few discrepancies exist with the classical virus–host origin nomenclature: a virus isolated from sheep is grouped in the goat poxvirus clade and vice versa. Intra-group diversity was further observed for the goat pox and lumpy skin disease virus isolates. Despite the presence of nine vaccine strains, no genetic determinants of virulence were identified on the GPCR gene. For sheep poxviruses, the addition or deletion of 21 nucleic acids (7 aa) was consistently observed in the 5′ terminal part of the gene. Specific signatures for each cluster were also identified. Prediction of the capripoxvirus GPCR topology, and its comparison with other known mammalian GPCRs and viral homologues, revealed not only a classical GPCR profile in the last three-quarters of the protein but also unique features such as a longer N-terminal end with a proximal hydrophobic -helix and a shorter serine-rich C-tail.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010686-0
2009-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1967.html?itemId=/content/journal/jgv/10.1099/vir.0.010686-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Delhon G., Tulman E. R., Lu Z., Zsak A., Becerra V. M., Zsak L., Kutish G. F., Rock D. L. 2005; Genome of deerpox virus. J Virol 79:966–977 [CrossRef]
    [Google Scholar]
  2. Babiuk S., Bowden T. R., Parkyn G., Dalman B., Hoa D. M., Long N. T., Vu P. P., Bieu do X., Copps J., Boyle D. B. 2009; Yemen and Vietnam capripoxviruses demonstrate a distinct host preference for goats compared with sheep. J Gen Virol 90:105–114 [CrossRef]
    [Google Scholar]
  3. Berhe G., Minet C., Le Goff C., Barrett T., Ngangnou A., Grillet C., Libeau G., Fleming M., Black D. N., Diallo A. 2003; Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections. J Virol 77:1571–1577 [CrossRef]
    [Google Scholar]
  4. Bhanuprakash V., Indrani B. K., Hosamani M., Singh R. K. 2006; The current status of sheep pox disease. Comp Immunol Microbiol Infect Dis 29:27–60 [CrossRef]
    [Google Scholar]
  5. Black D. N., Hammond J. M., Kitching R. P. 1986; Genomic relationship between capripoxviruses. Virus Res 5:277–292 [CrossRef]
    [Google Scholar]
  6. Cabrera-Vera T. M., Vanhauwe J., Thomas T. O., Medkova M., Preininger A., Mazzoni M. R., Hamm H. E. 2003; Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781 [CrossRef]
    [Google Scholar]
  7. Cao J. X., Gershon P. D., Black D. N. 1995; Sequence analysis of Hin dIII Q2 fragment of capripoxvirus reveals a putative gene encoding a G-protein-coupled chemokine receptor homologue. Virology 209:207–212 [CrossRef]
    [Google Scholar]
  8. Carn V. M. 1993; Control of capripoxvirus infections. Vaccine 11:1275–1279 [CrossRef]
    [Google Scholar]
  9. Case R., Sharp E., Benned-Jensen T., Rosenkilde M. M., Davis-Poynter N., Farrell H. E. 2008; Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signalling is associated with an attenuated phenotype in vivo . J Virol 82:1884–1898 [CrossRef]
    [Google Scholar]
  10. Davies F. G. 1976; Characteristics of a virus causing a pox disease in sheep and goats in Kenya, with observation on the epidemiology and control. J Hyg (Lond) 76:163–171 [CrossRef]
    [Google Scholar]
  11. Davies F. G. 1981; Sheep and goatpox. In Virus Diseases of Food Animals . pp 733–748Edited by Gibbs E. P. J. London: Academic Press;
  12. Davies F. G. 1982; Observations on the epidemiology of lumpy skin disease in Kenya. J Hyg (Lond) 88:95–102 [CrossRef]
    [Google Scholar]
  13. Davies F. G. 1991; Lumpy skin disease, an African capripox virus disease of cattle. Br Vet J 147:489–503 [CrossRef]
    [Google Scholar]
  14. Davies F. G., Otema C. 1981; Relationships of capripox viruses found in Kenya with two Middle Eastern strains and some orthopox viruses. Res Vet Sci 31:253–255
    [Google Scholar]
  15. Diallo A., Viljoen G. J. 2007; Genus Capripoxvirus . In Poxviruses pp 167–181Edited by Mercer A. A., Schmidt A., Weber O. F. Basel: Birkhäuser;
    [Google Scholar]
  16. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  17. Fick W. C., Viljoen G. J. 1994; Early and late transcriptional phases in the replication of lumpy-skin-disease virus. Onderstepoort J Vet Res 61:255–261
    [Google Scholar]
  18. Fraile-Ramos A., Kledal T. N., Pelchen-Matthews A., Bowers K., Schwartz T. W., Marsh M. 2001; The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749 [CrossRef]
    [Google Scholar]
  19. Fredriksson R., Lagerstrom M. C., Lundin L. G., Schioth H. B. 2003; The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272 [CrossRef]
    [Google Scholar]
  20. Gascuel O. 1997; bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  21. Gershon P. D., Black D. N. 1988; A comparison of the genomes of capripoxvirus isolates of sheep, goats, and cattle. Virology 164:341–349 [CrossRef]
    [Google Scholar]
  22. Heine H. G., Stevens M. P., Foord A. J., Boyle D. B. 1999; A capripoxvirus detection PCR and antibody ELISA based on the major antigen P32, the homolog of the vaccinia virus H3L gene. J Immunol Methods 227:187–196 [CrossRef]
    [Google Scholar]
  23. Hosamani M., Mondal B., Tembhurne P. A., Bandyopadhyay S. K., Singh R. K., Rasool T. J. 2004; Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene. Virus Genes 29:73–80 [CrossRef]
    [Google Scholar]
  24. Hunter P., Wallace D. 2001; Lumpy skin disease in southern Africa: a review of the disease and aspects of control. J S Afr Vet Assoc 72:68–71
    [Google Scholar]
  25. Joost P., Methner A. 2002; Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol 3:RESEARCH0063.1–0063.16
    [Google Scholar]
  26. Kara P. D., Afonso C. L., Wallace D. B., Kutish G. F., Abolnik C., Lu Z., Vreede F. T., Taljaard L. C., Zsak A. other authors 2003; Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of lumpy skin disease virus. Arch Virol 148:1335–1356
    [Google Scholar]
  27. Kawasawa Y., McKenzie L. M., Hill D. P., Bono H., Yanagisawa M. 2003; G protein-coupled receptor genes in the fantom2 database. Genome Res 13:1466–1477 [CrossRef]
    [Google Scholar]
  28. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  29. Kitching R. P., Taylor W. P. 1985; Clinical and antigenic relationship between isolates of sheep and goat pox viruses. Trop Anim Health Prod 17:64–74 [CrossRef]
    [Google Scholar]
  30. Kitching R. P., Hammond J. M., Black D. N. 1986; Studies on the major common precipitating antigen of capripoxvirus. J Gen Virol 67:139–148 [CrossRef]
    [Google Scholar]
  31. Kitching R. P., Hammond J. M., Taylor W. P. 1987; A single vaccine for the control of capripox infection in sheep and goats. Res Vet Sci 42:53–60
    [Google Scholar]
  32. Kitching R. P., Bhat P. P., Black D. N. 1989; The characterization of African strains of capripoxvirus. Epidemiol Infect 102:335–343 [CrossRef]
    [Google Scholar]
  33. Kostenis E. 2004; A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther 102:243–257 [CrossRef]
    [Google Scholar]
  34. Le Goff C., Fakhfakh E., Chadeyras A., Aba Adulugba E., Libeau G., Hammami S., Diallo A., Albina E. 2005; Host-range phylogenetic grouping of capripoxviruses: genetic typing of CaPVs. In Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries pp 727–733Edited by Makkar H. P. S., Viljoen G. J. Berlin: Springer;
    [Google Scholar]
  35. Massung R. F., Jayarama V., Moyer R. W. 1993; DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197:511–528 [CrossRef]
    [Google Scholar]
  36. Oppermann M. 2004; Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 16:1201–1210 [CrossRef]
    [Google Scholar]
  37. Perrier X., Flori A., Bonnet F. 2003; Data analysis methods. In Genetic Diversity of Cultivated Tropical Plants . pp 43–76Edited by Hamon P., Seguin M., Perrier X., Glaszmann. Montpellier: Gifield Science Publishers;
  38. Perrin A., Albina E., Bréard E., Sailleau C., Promé S., Grillet C., Kwiatek O., Russo P., Thiéry R. other authors 2007; Recombinant capripoxviruses expressing proteins of bluetongue virus: evaluation of immune responses and protection in small ruminants. Vaccine 25:6774–6783 [CrossRef]
    [Google Scholar]
  39. Randolph-Habecker J. R., Rahill B., Torok-Storb B., Vieira J., Kolattukudy P. E., Rovin B. H., Sedmak D. D. 2002; The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19:37–46 [CrossRef]
    [Google Scholar]
  40. Romero C. H., Barrett T., Evans S. A., Kitching R. P., Gershon P. D., Bostock C., Black D. N. 1993; Single capripoxvirus recombinant vaccine for the protection of cattle against rinderpest and lumpy skin disease. Vaccine 11:737–742 [CrossRef]
    [Google Scholar]
  41. Rosenkilde M. M. 2005; Virus-encoded chemokine receptors – putative novel antiviral drug targets. Neuropharmacology 48:1–13 [CrossRef]
    [Google Scholar]
  42. Rosenkilde M. M., Smit M. J., Waldhoer M. 2008; Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 153:Suppl. 1S154–S166
    [Google Scholar]
  43. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  44. Schoneberg T., Schultz G., Gudermann T. 1999; Structural basis of G protein-coupled receptor function. Mol Cell Endocrinol 151:181–193 [CrossRef]
    [Google Scholar]
  45. Stram Y., Kuznetzova L., Friedgut O., Gelman B., Yadin H., Rubinstein-Guini M. 2008; The use of lumpy skin disease virus genome termini for detection and phylogenetic analysis. J Virol Methods 151:225–229 [CrossRef]
    [Google Scholar]
  46. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Kutish G. F., Rock D. L. 2001; Genome of lumpy skin disease virus. J Virol 75:7122–7130 [CrossRef]
    [Google Scholar]
  47. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Sur J. H., Sandybaev N. T., Kerembekova U. Z., Zaitsev V. L., Kutish G. F., Rock D. L. 2002; The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061 [CrossRef]
    [Google Scholar]
  48. Van de Peer Y., De Wachter R. 1993; treecon: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182
    [Google Scholar]
  49. Wade-Evans A. M., Romero C. H., Mellor P., Takamatsu H., Anderson J., Thevasagayam J., Fleming M. J., Mertens P. P., Black D. N. 1996; Expression of the major core structural protein (VP7) of bluetongue virus, by a recombinant capripox virus, provides partial protection of sheep against a virulent heterotypic bluetongue virus challenge. Virology 220:227–231 [CrossRef]
    [Google Scholar]
  50. Wallace D. B., Ellis C. E., Espach A., Smith S. J., Greyling R. R., Viljoen G. J. 2006; Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever. Vaccine 24:7181–7189 [CrossRef]
    [Google Scholar]
  51. Weiss K. 1968; Lumpy skin disease virus. Virol Monogr 3:111–130
    [Google Scholar]
  52. Wells T. N., Power C. A., Lusti-Narasimhan M., Hoogewerf A. J., Cooke R. M., Chung C. W., Peitsch M. C., Proudfoot A. E. 1996; Selectivity and antagonism of chemokine receptors. J Leukoc Biol 59:53–60
    [Google Scholar]
  53. Yeruham I., Perl S., Nyska A., Abraham A., Davidson M., Haymovitch M., Zamir O., Grinstein H. 1994; Adverse reactions in cattle to a capripox vaccine. Vet Rec 135:330–332 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010686-0
Loading
/content/journal/jgv/10.1099/vir.0.010686-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error