Formulation of bovine respiratory syncytial virus fusion protein with CpG oligodeoxynucleotide, cationic host defence peptide and polyphosphazene enhances humoral and cellular responses and induces a protective type 1 immune response in mice Kovacs-Nolan, J. and Mapletoft, J. W. and Lawman, Z. and Babiuk, L. A. and van Drunen Littel-van den Hurk, S.,, 90, 1892-1905 (2009), doi = https://doi.org/10.1099/vir.0.011684-0, publicationName = Microbiology Society, issn = 0022-1317, abstract= Respiratory syncytial virus (RSV) is the leading cause of serious respiratory tract disease in children and calves; however, RSV vaccine development has been slow due to early observations that formalin-inactivated vaccines induced Th2-type immune responses and led to disease enhancement upon subsequent exposure. Hence, there is a need for novel adjuvants that will promote a protective Th1-type or balanced immune response against RSV. CpG oligodeoxynucleotides (ODNs), indolicidin, and polyphosphazene were examined for their ability to enhance antigen-specific immune responses and influence the Th-bias when co-formulated with a recombinant truncated bovine RSV (BRSV) fusion protein (ΔF). Mice immunized with ΔF co-formulated with CpG ODN, indolicidin, and polyphosphazene (ΔF/CpG/indol/PP) developed higher levels of ΔF-specific serum IgG, IgG1 and IgG2a antibodies when compared with ΔF alone, and displayed an increase in the frequency of gamma interferon-secreting cells and decreased interleukin (IL)-5 production by in vitro restimulated splenocytes, characteristic of a Th1 immune response. These results were observed in both C57BL/6 and BALB/c strains of mice. When evaluated in a BRSV challenge model, mice immunized with ΔF/CpG/indol/PP developed significantly higher levels of BRSV-neutralizing serum antibodies than mice immunized with the ΔF protein alone, and displayed significantly less pulmonary IL-4, IL-5, IL-13 and eotaxin and reduced eosinophilia after challenge. These results suggest that co-formulation of ΔF with CpG ODN, host defence peptide and polyphosphazene may result in a safe and effective vaccine for the prevention of BRSV and may have implications for the development of novel human RSV vaccines., language=, type=