1887

Abstract

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that induces the rapid onset of T-cell lymphomas in poultry. The MDV-encoded oncoprotein Meq plays an important role in oncogenicity, as its deletion abolishes the ability of the virus to induce tumours. It has been shown previously that Meq oncogenicity is linked to its interaction with C-terminal binding protein 1 (CtBP), a property also shared by other virus-encoded oncoproteins such as adenovirus E1A and Epstein–Barr virus EBNA3A and -3C. Therefore, this study examined whether Meq also shares the properties of these viral oncoproteins in interacting with other binding partners such as heat-shock protein 70 (Hsp70), a molecular chaperone protein linked to multiple cellular functions including neoplastic transformation. Confocal microscopic analysis demonstrated that MDV infection induced nuclear accumulation of Hsp70 and its co-localization with Meq. Biochemical evidence of Meq–Hsp70 interaction was obtained by two-way immunoprecipitation with Meq- and Hsp70-specific antibodies. To demonstrate further the Meq–Hsp70 interaction in virus-induced lymphomas, recombinant MDV was generated expressing an N-terminal tandem affinity purification (TAP) tag-fused Meq by mutagenesis of the infectious BAC clone of the oncogenic MDV strain RB-1B. Demonstration of Hsp70 in the TAP-tag affinity purified Meq from tumours induced by the recombinant virus, using quadrupole time-of-flight tandem mass spectrometry analysis, further confirmed the Meq–Hsp70 interaction in the transformed lymphocytes. Given the well-documented evidence of the tumorigenic properties of Hsp70 and its interaction with a number of other known viral oncoproteins, demonstration of the interaction of Meq and Hsp70 is significant in MDV oncogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012062-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2201.html?itemId=/content/journal/jgv/10.1099/vir.0.012062-0&mimeType=html&fmt=ahah

References

  1. Akiyama, Y. & Kato, S.(1974). Two cell lines from lymphomas of Marek's disease. Biken J 17, 105–116. [Google Scholar]
  2. Atkins, D., Lichtenfels, R. & Seliger, B.(2005). Heat shock proteins in renal cell carcinomas. Contrib Nephrol 148, 35–56. [Google Scholar]
  3. Barrow, A. D., Burgess, S. C., Baigent, S. J., Howes, K. & Nair, V. K.(2003). Infection of macrophages by a lymphotropic herpesvirus: a new tropism for Marek's disease virus. J Gen Virol 84, 2635–2645.[CrossRef] [Google Scholar]
  4. Brown, A. C., Baigent, S. J., Smith, L. P., Chattoo, J. P., Petherbridge, L. J., Hawes, P., Allday, M. J. & Nair, V.(2006). Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek's disease virus. Proc Natl Acad Sci U S A 103, 1687–1692.[CrossRef] [Google Scholar]
  5. Brunovskis, P., Qian, Z. & Li, D.(1996). In The 5th International Symposium on Marek's Disease, pp. 265–270. Kellogg Center, MI: American Association of Avian Pathologists.
  6. Calnek, B. W.(1986). Marek's disease – a model for herpesvirus oncology. Crit Rev Microbiol 12, 293–320. [Google Scholar]
  7. Carter, D. A.(1997). Modulation of cellular AP-1 DNA binding activity by heat shock proteins. FEBS Lett 416, 81–85.[CrossRef] [Google Scholar]
  8. Cheng, H., Cenciarelli, C., Shao, Z., Vidal, M., Parks, W. P., Pagano, M. & Cheng-Mayer, C.(2001). Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11, 1771–1775.[CrossRef] [Google Scholar]
  9. Chinnadurai, G.(2002). CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9, 213–224.[CrossRef] [Google Scholar]
  10. Chinnadurai, G.(2009). The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69, 731–734.[CrossRef] [Google Scholar]
  11. Cui, C. W., Yang, S. J., Liu, Y. P. & Liu, Y. F.(2003). Interaction between p53 and HSP70 in human hepatocellular carcinoma tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 19, 195–196. [Google Scholar]
  12. Dai, S., Jiang, L., Wang, G., Zhou, X., Wei, X., Cheng, H., Wu, Z. & Wei, D.(2009). HSP70 interacts with TRAF2 and differentially regulates TNFα signalling in human colon cancer cells. J Cell Mol Med in press [Google Scholar]
  13. Didelot, C., Schmitt, E., Brunet, M., Maingret, L., Parcellier, A. & Garrido, C.(2006). Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 172, 171–198. [Google Scholar]
  14. Dudeja, V., Mujumdar, N., Phillips, P., Chugh, R., Borja-Cacho, D., Dawra, R. K., Vickers, S. M. & Saluja, A. K.(2009). Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology 136, 1772–1182.[CrossRef] [Google Scholar]
  15. Forsman, A., Ruetschi, U., Ekholm, J. & Rymo, L.(2008). Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 7, 2309–2319.[CrossRef] [Google Scholar]
  16. Garrido, C., Schmitt, E., Cande, C., Vahsen, N., Parcellier, A. & Kroemer, G.(2003). HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2, 579–584. [Google Scholar]
  17. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E. & Kroemer, G.(2006). Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5, 2592–2601.[CrossRef] [Google Scholar]
  18. Glaessgen, A., Jonmarker, S., Lindberg, A., Nilsson, B., Lewensohn, R., Ekman, P., Valdman, A. & Egevad, L.(2008). Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS 116, 888–895.[CrossRef] [Google Scholar]
  19. Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W. H., Chi, J. T., Braich, R., Manoharan, M., Soutschek, J. & other authors(2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099.[CrossRef] [Google Scholar]
  20. Hainaut, P. & Milner, J.(1992). Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J 11, 3513–3520. [Google Scholar]
  21. Hickabottom, M., Parker, G. A., Freemont, P., Crook, T. & Allday, M. J.(2002). Two nonconsensus sites in the Epstein–Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem 277, 47197–47204.[CrossRef] [Google Scholar]
  22. Inoue, A., Torigoe, T., Sogahata, K., Kamiguchi, K., Takahashi, S., Sawada, Y., Saijo, M., Taya, Y., Ishii, S. & other authors(1995). 70-kDa heat shock cognate protein interacts directly with the N-terminal region of the retinoblastoma gene product pRb. Identification of a novel region of pRb-mediating protein interaction. J Biol Chem 270, 22571–22576.[CrossRef] [Google Scholar]
  23. Jaattela, M.(1995). Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60, 689–693.[CrossRef] [Google Scholar]
  24. Javier, R. T. & Butel, J. S.(2008). The history of tumor virology. Cancer Res 68, 7693–7706.[CrossRef] [Google Scholar]
  25. Jones, D., Lee, L., Liu, J. L., Kung, H. J. & Tillotson, J. K.(1992). Marek's disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc Natl Acad Sci U S A 89, 4042–4046.[CrossRef] [Google Scholar]
  26. Kao, H. T., Capasso, O., Heintz, N. & Nevins, J. R.(1985). Cell cycle control of the human HSP70 gene: implications for the role of a cellular E1A-like function. Mol Cell Biol 5, 628–633. [Google Scholar]
  27. Lee, L. F., Lupiani, B., Silva, R. F., Kung, H. J. & Reddy, S. M.(2008). Recombinant Marek's disease virus (MDV) lacking the Meq oncogene confers protection against challenge with a very virulent plus strain of MDV. Vaccine 26, 1887–1892.[CrossRef] [Google Scholar]
  28. Levy, A. M., Izumiya, Y., Brunovskis, P., Xia, L., Parcells, M. S., Reddy, S. M., Lee, L., Chen, H. W. & Kung, H. J.(2003). Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein Meq in Marek's disease virus-transformed T cells. J Virol 77, 12841–12851.[CrossRef] [Google Scholar]
  29. Levy, A. M., Gilad, O., Xia, L., Izumiya, Y., Choi, J., Tsalenko, A., Yakhini, Z., Witter, R., Lee, L. & other authors(2005). Marek's disease virus Meq transforms chicken cells via the v-Jun transcriptional cascade: a converging transforming pathway for avian oncoviruses. Proc Natl Acad Sci U S A 102, 14831–14836.[CrossRef] [Google Scholar]
  30. Li, P. P., Itoh, N., Watanabe, M., Shi, Y., Liu, P., Yang, H. J. & Kasamatsu, H.(2009). Association of simian virus 40 Vp1 with 70-kilodalton heat shock proteins and viral tumor antigens. J Virol 83, 37–46.[CrossRef] [Google Scholar]
  31. Lolli, G., Thaler, F., Valsasina, B., Roletto, F., Knapp, S., Uggeri, M., Bachi, A., Matafora, V., Storici, P. & other authors(2003). Inhibitor affinity chromatography: profiling the specific reactivity of the proteome with immobilized molecules. Proteomics 3, 1287–1298.[CrossRef] [Google Scholar]
  32. Lum, L. S., Hsu, S., Vaewhongs, M. & Wu, B.(1992). The hsp70 gene CCAAT-binding factor mediates transcriptional activation by the adenovirus E1a protein. Mol Cell Biol 12, 2599–2605. [Google Scholar]
  33. Lupiani, B., Lee, L. F., Cui, X., Gimeno, I., Anderson, A., Silva, R. F., Witter, R. L., Kung, H. J. & Reddy, S. M.(2004). Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc Natl Acad Sci U S A 101, 11815–11820.[CrossRef] [Google Scholar]
  34. Mannick, J. B., Tong, X., Hemnes, A. & Kieff, E.(1995). The Epstein–Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol 69, 8169–8172. [Google Scholar]
  35. Meimaridou, E., Gooljar, S. B. & Chapple, J. P.(2009). From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42, 1–9. [Google Scholar]
  36. Nair, V. & Kung, H. J.(2004). Marek's disease virus oncogenicity: molecular mechanisms. In Marek's Disease, an Evolving Problem, pp. 32–48. Edited by F. Davison & V. Nair. Oxford: Elsevier Academic Press.
  37. Osterrieder, N., Kamil, J. P., Schumacher, D., Tischer, B. K. & Trapp, S.(2006). Marek's disease virus: from miasma to model. Nat Rev Microbiol 4, 283–294.[CrossRef] [Google Scholar]
  38. Peng, C. W., Zhao, B., Chen, H. C., Chou, M. L., Lai, C. Y., Lin, S. Z., Hsu, H. Y. & Kieff, E.(2007). Hsp72 up-regulates Epstein–Barr virus EBNALP coactivation with EBNA2. Blood 109, 5447–5454.[CrossRef] [Google Scholar]
  39. Petherbridge, L., Brown, A. C., Baigent, S. J., Howes, K., Sacco, M. A., Osterrieder, N. & Nair, V. K.(2004). Oncogenicity of virulent Marek's disease virus cloned as bacterial artificial chromosomes. J Virol 78, 13376–13380.[CrossRef] [Google Scholar]
  40. Ramaroson, M. F., Ruby, J., Goshe, M. B. & Liu, H. C.(2008). Changes in the Gallus gallus proteome induced by Marek's disease virus. J Proteome Res 7, 4346–4358.[CrossRef] [Google Scholar]
  41. Sang, N. & Giordano, A.(1997). Extreme N terminus of E1A oncoprotein specifically associates with a new set of cellular proteins. J Cell Physiol 170, 182–191.[CrossRef] [Google Scholar]
  42. Suchodolski, P. F., Izumiya, Y., Lupiani, B., Ajithdoss, D. K., Gilad, O., Lee, L. F., Kung, H. J. & Reddy, S. M.(2009). Homodimerization of Marek's disease virus-encoded Meq protein is not sufficient for transformation of lymphocytes in chickens. J Virol 83, 859–869.[CrossRef] [Google Scholar]
  43. Sullivan, C. S., Gilbert, S. P. & Pipas, J. M.(2001). ATP-dependent simian virus 40 T-antigen–Hsc70 complex formation. J Virol 75, 1601–1610.[CrossRef] [Google Scholar]
  44. Tischer, B. K., von Einem, J., Kaufer, B. & Osterrieder, N.(2006). Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40, 191–197.[CrossRef] [Google Scholar]
  45. Tsai, A. & Carstens, R. P.(2006). An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1, 2820–2827. [Google Scholar]
  46. Vargas-Roig, L. M., Fanelli, M. A., Lopez, L. A., Gago, F. E., Tello, O., Aznar, J. C. & Ciocca, D. R.(1997). Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 21, 441–451. [Google Scholar]
  47. Volloch, V. Z. & Sherman, M. Y.(1999). Oncogenic potential of Hsp72. Oncogene 18, 3648–3651.[CrossRef] [Google Scholar]
  48. White, E., Spector, D. & Welch, W.(1988). Differential distribution of the adenovirus E1A proteins and colocalization of E1A with the 70-kilodalton cellular heat shock protein in infected cells. J Virol 62, 4153–4166. [Google Scholar]
  49. Yin, Q., McBride, J., Fewell, C., Lacey, M., Wang, X., Lin, Z., Cameron, J. & Flemington, E. K.(2008). MicroRNA-155 is an Epstein–Barr virus-induced gene that modulates Epstein–Barr virus-regulated gene expression pathways. J Virol 82, 5295–5306.[CrossRef] [Google Scholar]
  50. Young, P., Anderton, E., Paschos, K., White, R. & Allday, M. J.(2008). Epstein–Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones. J Gen Virol 89, 866–877.[CrossRef] [Google Scholar]
  51. Zhang, S. M., Sun, D. C., Lou, S., Bo, X. C., Lu, Z., Qian, X. H. & Wang, S. Q.(2005). HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol 150, 1579–1590.[CrossRef] [Google Scholar]
  52. Zhao, Y., Petherbridge, L., Smith, L. P., Baigent, S. & Nair, V.(2008). Self-excision of the BAC sequences from the recombinant Marek's disease virus genome increases replication and pathogenicity. Virol J 5, 19[CrossRef] [Google Scholar]
  53. Zhao, Y., Yao, Y., Xu, H., Lambeth, L., Smith, L. P., Kgosana, L., Wang, X. & Nair, V.(2009). A functional microRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol 83, 489–492.[CrossRef] [Google Scholar]
  54. Zimny-Arndt, U., Schmid, M., Ackermann, R. & Jungblut, P. R.(2009). Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods Mol Biol 492, 65–91. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012062-0
Loading
/content/journal/jgv/10.1099/vir.0.012062-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error