1887

Abstract

The focus of this research was to compare the binding profiles of human papillomavirus (HPV) 11, 16, 18 and 45 virus-like particles (VLPs) to HaCaT cells and to the extracellular matrix (ECM) secreted by these cells. All four HPV types tested bind to a component(s) of the ECM. HPV11 VLP binding is blocked when the ECM is pretreated with an anti-laminin 5 (LN5) polyclonal antibody. A series of treatments utilizing heparins and heparinase revealed that HPV18 VLPs are dependent on heparan sulfates (HS) for binding to cells and ECM. HPV16 and HPV45 VLPs are dependent on HS for binding to HaCaT cells and dependent on both HS and LN5 for binding to ECM. These studies emphasize the need to study the binding characteristics of different HPV types before applying universal binding principles to all papillomaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012732-0
2010-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/531.html?itemId=/content/journal/jgv/10.1099/vir.0.012732-0&mimeType=html&fmt=ahah

References

  1. Andriessen, M. P., van den Born, J., Latijnhouwers, M. A., Bergers, M., van de Kerkhof, P. C. & Schalkwijk, J.(1997). Basal membrane heparan sulphate proteoglycan expression during wound healing in human skin. J Pathol 183, 264–271.[CrossRef] [Google Scholar]
  2. Bayer, N., Schober, D., Huttinger, M., Blaas, D. & Fuchs, R.(2001). Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. J Biol Chem 276, 3952–3962.[CrossRef] [Google Scholar]
  3. Bishop, B., Dasgupta, J., Klein, M., Garcea, R. L., Christensen, N. D., Zhao, R. & Chen, X. J. S.(2007). Crystal structures of four types of human papillomavirus L1 capsid: understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem 282, 31803–31811.[CrossRef] [Google Scholar]
  4. Bousarghin, L., Touze, A., Sizaret, P. Y. & Coursaget, P.(2003). Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77, 3846–3850.[CrossRef] [Google Scholar]
  5. Buck, C. B., Thompson, C. D., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T.(2005). Maturation of papillomavirus capsids. J Virol 79, 2839–2846.[CrossRef] [Google Scholar]
  6. Buck, C. B., Thompson, C. D., Roberts, J. N., Müller, M., Lowy, D. R. & Schiller, J. T.(2006). Carrageenan is a potent inhibitor of papillomavirus infection. Plos Pathog 2, e69[CrossRef] [Google Scholar]
  7. Christensen, N. D., Kreider, J. W., Cladel, N. M. & Galloway, D. A.(1990). Immunological cross-reactivity to laboratory-produced HPV-11 virions of polysera raised against bacterially derived fusion proteins and synthetic peptides of HPV-6B and HPV-16 capsid proteins. Virology 175, 1–9.[CrossRef] [Google Scholar]
  8. Christensen, N. D., Dillner, J., Eklund, C., Carter, J. J., Wipf, G. C., Reed, C. A., Cladel, N. M. & Galloway, D. A.(1996). Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology 223, 174–184.[CrossRef] [Google Scholar]
  9. Culp, T. D., Budgeon, L. R. & Christensen, N. D.(2006a). Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology 347, 147–159.[CrossRef] [Google Scholar]
  10. Culp, T. D., Budgeon, L. R., Marinkovich, M. P., Meneguzzi, G. & Christensen, N. D.(2006b). Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80, 8940–8950.[CrossRef] [Google Scholar]
  11. Da Silva, D. M., Fausch, S. C., Verbeek, J. S. & Kast, W. M.(2007). Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcγ receptors and contributes to acquisition of T cell immunity. J Immunol 178, 7587–7597.[CrossRef] [Google Scholar]
  12. Day, P. M., Thompson, C. D., Buck, C. B., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T.(2007). Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81, 8784–8792.[CrossRef] [Google Scholar]
  13. Day, P. M., Lowy, D. R. & Schiller, J. T.(2008). Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 82, 12565–12568.[CrossRef] [Google Scholar]
  14. Evander, M., Frazer, I. H., Payne, E., Qi, Y. M., Hengst, K. & McMillan, N. A. J.(1997). Identification of the α6 integrin as a candidate receptor for papillomaviruses. J Virol 71, 2449–2456. [Google Scholar]
  15. Giroglou, T., Florin, L., Schafer, F., Streeck, R. E. & Sapp, M.(2001). Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75, 1565–1570.[CrossRef] [Google Scholar]
  16. Johnson, K. M., Kines, R. C., Roberts, J. N., Lowy, D. R., Schiller, J. T. & Day, P. M.(2009). Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83, 2067–2074.[CrossRef] [Google Scholar]
  17. Jones, J. C. R., Hopkinson, S. B. & Goldfinger, L. E.(1998). Structure and assembly of hemidesmosomes. Bioessays 20, 488–494.[CrossRef] [Google Scholar]
  18. Joyce, J. G., Tung, J. S., Przysiecki, C. T., Cook, J. C., Lehman, E. D., Sands, J. A., Jansens, K. U. & Keller, P. M.(1999). The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274, 5810–5822.[CrossRef] [Google Scholar]
  19. Knappe, M., Bodevin, S., Selinka, H. C., Spillmann, D., Streeck, R. E., Chen, X. J. S., Lindahl, U. & Sapp, M.(2007). Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 282, 27913–27922.[CrossRef] [Google Scholar]
  20. Mistry, N., Wibom, C. & Evander, M.(2008). Cutaneous and mucosal human papillomaviruses differ in net surface charge, potential impact on tropism. Virol J 5, 118[CrossRef] [Google Scholar]
  21. Ogawa, T., Tsubota, Y., Hashimoto, J., Kariya, Y. & Miyazaki, K.(2007). The short arm of laminin γ2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin β4 chain. Mol Biol Cell 18, 1621–1633.[CrossRef] [Google Scholar]
  22. Oksala, O., Salo, T., Tammi, R., Hakkinen, L., Jalkanen, M., Inki, P. & Larjava, H.(1995). Expression of proteoglycans and hyaluronan during wound-healing. J Histochem Cytochem 43, 125–135.[CrossRef] [Google Scholar]
  23. Pastrana, D. V., Buck, C. B., Pang, Y. Y. S., Thompson, C. D., Castle, P. E., FitzGerald, P. C., Kjaer, S. K., Lowy, D. R. & Schiller, J. T.(2004). Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205–216.[CrossRef] [Google Scholar]
  24. Patterson, N. A., Smith, J. L. & Ozbun, M. A.(2005). Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate. J Virol 79, 6838–6847.[CrossRef] [Google Scholar]
  25. Roberts, J. N., Buck, C. B., Thompson, C. D., Kines, R., Bernardo, M., Choyke, P. L., Lowy, D. R. & Schiller, J. T.(2007). Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13, 857–861.[CrossRef] [Google Scholar]
  26. Sapp, M. & Day, P. M.(2009). Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384, 400–409.[CrossRef] [Google Scholar]
  27. Schelhaas, M., Ewers, H., Rajamaki, M. L., Day, P. M., Schiller, J. T. & Helenius, A.(2008). Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4, e1000148[CrossRef] [Google Scholar]
  28. Selinka, H. C., Giroglou, T., Nowak, T., Christensen, N. D. & Sapp, M.(2003). Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol 77, 12961–12967.[CrossRef] [Google Scholar]
  29. Selinka, H. C., Florin, L., Patel, H. D., Freitag, K., Schmidtke, M., Makarov, V. A. & Sapp, M.(2007). Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81, 10970–10980.[CrossRef] [Google Scholar]
  30. Shafti-Keramat, S., Handisurya, A., Kriehuber, E., Meneguzzi, G., Slupetzky, K. & Kirnbauer, R.(2003). Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77, 13125–13135.[CrossRef] [Google Scholar]
  31. Smith, J. L., Lidke, D. S. & Ozbun, M. A.(2008). Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology 381, 16–21.[CrossRef] [Google Scholar]
  32. Wang, X., Sapp, M., Christensen, N. D. & Dillner, J.(2005). Heparin-based ELISA reduces background reactivity in virus-like particle-based papillomavirus serology. J Gen Virol 86, 65–73.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012732-0
Loading
/content/journal/jgv/10.1099/vir.0.012732-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 531–540

[ Single PDF file] (2 MB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error