1887

Abstract

Many acute viral infections can be controlled by vaccination; however, vaccinating against persistent infections remains problematic. Herpesviruses are a classic example. Here, we discuss their immune control, particularly that of gamma-herpesviruses, relating the animal model provided by murid herpesvirus-4 (MuHV-4) to human infections. The following points emerge: (i) CD8 T-cell evasion by herpesviruses confers a prominent role in host defence on CD4 T cells. CD4 T cells inhibit MuHV-4 lytic gene expression via gamma-interferon (IFN-). By reducing the lytic secretion of immune evasion proteins, they may also help CD8 T cells to control virus-driven lymphoproliferation in mixed lytic/latent lesions. Similarly, CD4 T cells specific for Epstein–Barr virus lytic antigens could improve the impact of adoptively transferred, latent antigen-specific CD8 T cells. (ii) In general, viral immune evasion necessitates multiple host effectors for optimal control. Thus, subunit vaccines, which tend to prime single effectors, have proved less successful than attenuated virus mutants, which prime multiple effectors. Latency-deficient mutants could make safe and effective gamma-herpesvirus vaccines. (iii) The antibody response to MuHV-4 infection helps to prevent disease but is suboptimal for neutralization. Vaccinating virus carriers with virion fusion complex components improves their neutralization titres. Reducing the infectivity of herpesvirus carriers in this way could be a useful adjunct to vaccinating naive individuals with attenuated mutants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013300-0
2009-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2317.html?itemId=/content/journal/jgv/10.1099/vir.0.013300-0&mimeType=html&fmt=ahah

References

  1. Adhikary D., Behrends U., Moosmann A., Witter K., Bornkamm G. W., Mautner J. 2006; Control of Epstein–Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203:995–1006 [CrossRef]
    [Google Scholar]
  2. Babcock G. J., Decker L. L., Freeman R. B., Thorley-Lawson D. A. 1999; Epstein–Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 190:567–576 [CrossRef]
    [Google Scholar]
  3. Baigent S. J., Smith L. P., Nair V. K., Currie R. J. 2006; Vaccinal control of Marek's disease: current challenges, and future strategies to maximize protection. Vet Immunol Immunopathol 112:78–86 [CrossRef]
    [Google Scholar]
  4. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T. W., Zinkernagel R. M. 1994; Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol 68:4700–4704
    [Google Scholar]
  5. Belz G. T., Stevenson P. G., Castrucci M. R., Altman J. D., Doherty P. C. 2000; Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proc Natl Acad Sci U S A 97:2725–2730 [CrossRef]
    [Google Scholar]
  6. Belz G. T., Liu H., Andreansky S., Doherty P. C., Stevenson P. G. 2003; Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-Ab−/− mice. J Gen Virol 84:337–341 [CrossRef]
    [Google Scholar]
  7. Bennett N. J., May J. S., Stevenson P. G. 2005; Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3:e120 [CrossRef]
    [Google Scholar]
  8. Biggs P. M. 1997; Marek's disease herpesvirus: oncogenesis and prevention. Philos Trans R Soc Lond B Biol Sci 352:1951–1962 [CrossRef]
    [Google Scholar]
  9. Blake N., Haigh T., Shaka'a G., Croom-Carter D., Rickinson A. 2000; The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165:7078–7087 [CrossRef]
    [Google Scholar]
  10. Blaskovic D., Stancekova M., Svobodova J., Mistrikova J. 1980; Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24:468
    [Google Scholar]
  11. Boname J. M., Stevenson P. G. 2001; MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15:627–636 [CrossRef]
    [Google Scholar]
  12. Boname J. M., de Lima B. D., Lehner P. J., Stevenson P. G. 2004a; Viral degradation of the MHC class I peptide loading complex. Immunity 20:305–317 [CrossRef]
    [Google Scholar]
  13. Boname J. M., Coleman H. M., May J. S., Stevenson P. G. 2004b; Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85:131–135 [CrossRef]
    [Google Scholar]
  14. Bouma A. 2005; Determination of the effectiveness of Pseudorabies marker vaccines in experiments and field trials. Biologicals 33:241–245 [CrossRef]
    [Google Scholar]
  15. Bowden R. J., Simas J. P., Davis A. J., Efstathiou S. 1997; Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78:1675–1687
    [Google Scholar]
  16. Braaten D. C., McClellan J. S., Messaoudi I., Tibbetts S. A., McClellan K. B., Nikolich-Zugich J., Virgin H. W. 2006; Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. PLoS Pathog 2:e37 [CrossRef]
    [Google Scholar]
  17. Bridgeman A., Stevenson P. G., Simas J. P., Efstathiou S. 2001; A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194:301–312 [CrossRef]
    [Google Scholar]
  18. Burkhardt A. L., Bolen J. B., Kieff E., Longnecker R. 1992; An Epstein–Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J Virol 66:5161–5167
    [Google Scholar]
  19. Callan M. F., Steven N., Krausa P., Wilson J. D., Moss P. A., Gillespie G. M., Bell J. I., Rickinson A. B., McMichael A. J. 1996; Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med 2:906–911 [CrossRef]
    [Google Scholar]
  20. Cardin R. D., Brooks J. W., Sarawar S. R., Doherty P. C. 1996; Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184:863–871 [CrossRef]
    [Google Scholar]
  21. Carneiro-Sampaio M., Coutinho A. 2007; Immunity to microbes: lessons from primary immunodeficiencies. Infect Immun 75:1545–1555 [CrossRef]
    [Google Scholar]
  22. Cerundolo V., de la Salle H. 2006; Description of HLA class I- and CD8-deficient patients: insights into the function of cytotoxic T lymphocytes and NK cells in host defense. Semin Immunol 18:330–336 [CrossRef]
    [Google Scholar]
  23. Chastel C., Beaucournu J. P., Chastel O., Legrand M. C., Le Goff F. 1994; A herpesvirus from an European shrew ( Crocidura russula ). Acta Virol 38:309
    [Google Scholar]
  24. Christensen J. P., Cardin R. D., Branum K. C., Doherty P. C. 1999; CD4+ T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN- γ . Proc Natl Acad Sci U S A 96:5135–5140 [CrossRef]
    [Google Scholar]
  25. Coleman H. M., Brierley I., Stevenson P. G. 2003a; An internal ribosome entry site directs translation of the murine gammaherpesvirus 68 MK3 open reading frame. J Virol 77:13093–13105 [CrossRef]
    [Google Scholar]
  26. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003b; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [CrossRef]
    [Google Scholar]
  27. Davenport M. G., Pagano J. S. 1999; Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein–Barr virus type I latency. J Virol 73:3154–3161
    [Google Scholar]
  28. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [CrossRef]
    [Google Scholar]
  29. de Lima B. D., May J. S., Marques S., Simas J. P., Stevenson P. G. 2005; Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo . J Gen Virol 86:31–40 [CrossRef]
    [Google Scholar]
  30. Dutia B. M., Clarke C. J., Allen D. J., Nash A. A. 1997; Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells. J Virol 71:4278–4283
    [Google Scholar]
  31. Ehtisham S., Sunil-Chandra N. P., Nash A. A. 1993; Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67:5247–5252
    [Google Scholar]
  32. Elliott S. L., Suhrbier A., Miles J. J., Lawrence G., Pye S. J., Le T. T., Rosenstengel A., Nguyen T., Allworth A. other authors 2008; Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J Virol 82:1448–1457 [CrossRef]
    [Google Scholar]
  33. Epstein M. A., Achong B. G., Barr Y. M. 1964; Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–703
    [Google Scholar]
  34. Faulkner G. C., Krajewski A. S., Crawford D. H. 2000; The ins and outs of EBV infection. Trends Microbiol 8:185–189 [CrossRef]
    [Google Scholar]
  35. Fowler P., Efstathiou S. 2004; Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 85:609–613 [CrossRef]
    [Google Scholar]
  36. Fowler P., Marques S., Simas J. P., Efstathiou S. 2003; ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84:3405–3416 [CrossRef]
    [Google Scholar]
  37. Früh K., Bartee E., Gouveia K., Mansouri M. 2002; Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res 88:55–69 [CrossRef]
    [Google Scholar]
  38. Fu T., Voo K. S., Wang R. F. 2004; Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo . J Clin Invest 114:542–550 [CrossRef]
    [Google Scholar]
  39. Gangappa S., Kapadia S. B., Speck S. H., Virgin H. W. 2002; Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468 [CrossRef]
    [Google Scholar]
  40. Gill M. B., Gillet L., Colaco S., May J. S., de Lima B. D., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein H-glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87:1465–1475 [CrossRef]
    [Google Scholar]
  41. Gill M. B., Wright D. E., Smith C. M., May J. S., Stevenson P. G. 2009; Murid herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for host colonization. J Gen Virol 90:1461–1470 [CrossRef]
    [Google Scholar]
  42. Gillet L., Stevenson P. G. 2007a; Evidence for a multiprotein gamma-2 herpesvirus entry complex. J Virol 81:13082–13091 [CrossRef]
    [Google Scholar]
  43. Gillet L., Stevenson P. G. 2007b; Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO J 26:5131–5142 [CrossRef]
    [Google Scholar]
  44. Gillet L., Gill M. B., Colaco S., Smith C. M., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. J Gen Virol 87:3515–3527 [CrossRef]
    [Google Scholar]
  45. Gillet L., May J. S., Stevenson P. G. 2007a; Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2:e899 [CrossRef]
    [Google Scholar]
  46. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007b; The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2:e705 [CrossRef]
    [Google Scholar]
  47. Gillet L., Colaco S., Stevenson P. G. 2008a; Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89:1352–1363 [CrossRef]
    [Google Scholar]
  48. Gillet L., Colaco S., Stevenson P. G. 2008b; The murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 3:e2811 [CrossRef]
    [Google Scholar]
  49. Gillet L., May J. S., Stevenson P. G. 2009a; In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. J Gen Virol 90:602–613 [CrossRef]
    [Google Scholar]
  50. Gillet L., Alenquer M., Glauser D. L., Colaco S., May J. S., Stevenson P. G. 2009b; Glycoprotein L sets the neutralization profile of murid herpesvirus-4. J Gen Virol 90:1202–1214 [CrossRef]
    [Google Scholar]
  51. Gottschalk S., Rooney C. M., Heslop H. E. 2005; Post-transplant lymphoproliferative disorders. Annu Rev Med 56:29–44 [CrossRef]
    [Google Scholar]
  52. Hadinoto V., Shapiro M., Greenough T. C., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A. 2008; On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis. Blood 111:1420–1427
    [Google Scholar]
  53. Haque T., Wilkie G. M., Jones M. M., Higgins C. D., Urquhart G., Wingate P., Burns D., McAulay K., Turner M. other authors 2007; Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110:1123–1131 [CrossRef]
    [Google Scholar]
  54. Hayashida I., Nagafuchi S., Hayashi Y., Kino Y., Mori R., Oda H., Ohtomo N., Tashiro A. 1982; Mechanism of antibody-mediated protection against herpes simplex virus infection in athymic nude mice: requirement of Fc portion of antibody. Microbiol Immunol 26:497–509 [CrossRef]
    [Google Scholar]
  55. Hengel H., Brune W., Koszinowski U. H. 1998; Immune evasion by cytomegalovirus – survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197 [CrossRef]
    [Google Scholar]
  56. Hengel H., Reusch U., Geginat G., Holtappels R., Ruppert T., Hellebrand E., Koszinowski U. H. 2000; Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J Virol 74:7861–7868 [CrossRef]
    [Google Scholar]
  57. Hislop A. D., Ressing M. E., van Leeuwen D., Pudney V. A., Horst D., Koppers-Lalic D., Croft N. P., Neefjes J. J., Rickinson A. B., Wiertz E. J. H. J. 2007; A CD8+ T cell immune evasion protein specific to Epstein–Barr virus and its close relatives in Old World primates. J Exp Med 204:1863–1873 [CrossRef]
    [Google Scholar]
  58. Hoagland R. J. 1964; The incubation period of infectious mononucleosis. Am J Public Health Nations Health 54:1699–1705 [CrossRef]
    [Google Scholar]
  59. Husain S. M., Usherwood E. J., Dyson H., Coleclough C., Coppola M. A., Woodland D. L., Blackman M. A., Stewart J. P., Sample J. T. 1999; Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8+ T lymphocytes. Proc Natl Acad Sci U S A 96:7508–7513 [CrossRef]
    [Google Scholar]
  60. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H. J. 2000; Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  61. Johnson A. J., Chu C. F., Milligan G. N. 2008; Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 82:9678–9688 [CrossRef]
    [Google Scholar]
  62. Karrer U., Sierro S., Wagner M., Oxenius A., Hengel H., Koszinowski U. H., Phillips R. E., Klenerman P. 2003; Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170:2022–2029 [CrossRef]
    [Google Scholar]
  63. Kayhan B., Yager E. J., Lanzer K., Cookenham T., Jia Q., Wu T. T., Woodland D. L., Sun R., Blackman M. A. 2007; A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. J Immunol 179:8392–8402 [CrossRef]
    [Google Scholar]
  64. Khan N., Shariff N., Cobbold M., Bruton R., Ainsworth J. A., Sinclair A. J., Nayak L., Moss P. A. 2002; Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169:1984–1992 [CrossRef]
    [Google Scholar]
  65. Kim I. J., Flaño E., Woodland D. L., Blackman M. A. 2002; Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168:3958–3964 [CrossRef]
    [Google Scholar]
  66. Klein R. J. 1982; Treatment of experimental latent herpes simplex virus infections with acyclovir and other antiviral compounds. Am J Med 73:138–142 [CrossRef]
    [Google Scholar]
  67. Knickelbein J. E., Khanna K. M., Yee M. B., Baty C. J., Kinchington P. R., Hendricks R. L. 2008; Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322:268–271 [CrossRef]
    [Google Scholar]
  68. Kozuch O., Reichel M., Lesso J., Remenova A., Labuda M., Lysy J., Mistrikova J. 1993; Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37:101–105
    [Google Scholar]
  69. Lee H., Guo J., Li M., Choi J. K., DeMaria M., Rosenzweig M., Jung J. U. 1998; Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol Cell Biol 18:5219–5228
    [Google Scholar]
  70. Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P. M., Klein G., Kurilla M. G., Masucci M. G. 1995; Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375:685–688 [CrossRef]
    [Google Scholar]
  71. Liu L., Usherwood E. J., Blackman M. A., Woodland D. L. 1999; T-cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice. J Virol 73:9849–9857
    [Google Scholar]
  72. Lybarger L., Wang X., Harris M. R., Virgin H. W., Hansen T. H. 2003; Virus subversion of the MHC class I peptide-loading complex. Immunity 18:121–130 [CrossRef]
    [Google Scholar]
  73. Marques S., Efstathiou S., Smith K. G., Haury M., Simas J. P. 2003; Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77:7308–7318 [CrossRef]
    [Google Scholar]
  74. Marques S., Alenquer M., Stevenson P. G., Simas J. P. 2008; A single CD8+ T cell epitope sets the long-term latent load of a murid herpesvirus. PLoS Pathog 4:e1000177 [CrossRef]
    [Google Scholar]
  75. Mautner J., Pich D., Nimmerjahn F., Milosevic S., Adhikary D., Christoph H., Witter K., Bornkamm G. W., Hammerschmidt W., Behrends U. 2004; Epstein–Barr virus nuclear antigen 1 evades direct immune recognition by CD4+ T helper cells. Eur J Immunol 34:2500–2509 [CrossRef]
    [Google Scholar]
  76. McClellan J. S., Tibbetts S. A., Gangappa S., Brett K. A., Virgin H. W. 2004; Critical role of CD4 T cells in an antibody-independent mechanism of vaccination against gammaherpesvirus latency. J Virol 78:6836–6845 [CrossRef]
    [Google Scholar]
  77. Medawar P. B. 1948; Immunity to homologous grafted skin: the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69
    [Google Scholar]
  78. Milho R., Smith C. M., Marques S., Alenquer M., May J. S., Gillet L., Gaspar M., Efstathiou S., Simas J. P., Stevenson P. G. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32 [CrossRef]
    [Google Scholar]
  79. Moorman N. J., Willer D. O., Speck S. H. 2003; The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77:10295–10303 [CrossRef]
    [Google Scholar]
  80. Moser J. M., Farrell M. L., Krug L. T., Upton J. W., Speck S. H. 2006; A gammaherpesvirus 68 gene 50 null mutant establishes long-term latency in the lung but fails to vaccinate against a wild-type virus challenge. J Virol 80:1592–1598 [CrossRef]
    [Google Scholar]
  81. Nash A. A., Dutia B. M., Stewart J. P., Davison A. J. 2001; Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356:569–579 [CrossRef]
    [Google Scholar]
  82. Nicholas J. 2005; Human gammaherpesvirus cytokines and chemokine receptors. J Interferon Cytokine Res 25:373–383 [CrossRef]
    [Google Scholar]
  83. Nikiforow S., Bottomly K., Miller G., Munz C. 2003; Cytolytic CD4+-T-cell clones reactive to EBNA1 inhibit Epstein–Barr virus-induced B-cell proliferation. J Virol 77:12088–12104 [CrossRef]
    [Google Scholar]
  84. Orr M. T., Mathis M. A., Lagunoff M., Sacks J. A., Wilson C. B. 2007; CD8 T cell control of HSV reactivation from latency is abrogated by viral inhibition of MHC class I. Cell Host Microbe 2:172–180 [CrossRef]
    [Google Scholar]
  85. Parry C. M., Simas J. P., Smith V. P., Stewart C. A., Minson A. C., Efstathiou S., Alcami A. 2000; A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191:573–578 [CrossRef]
    [Google Scholar]
  86. Polić B., Jonjić S., Pavić I., Crnković I., Zorica I., Hengel H., Lucin P., Koszinowski U. H. 1996; Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo . J Gen Virol 77:217–225 [CrossRef]
    [Google Scholar]
  87. Polić B., Hengel H., Krmpotić A., Trgovcich J., Pavić I., Luccaronin P., Jonjić S., Koszinowski U. H. 1998; Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054 [CrossRef]
    [Google Scholar]
  88. Proença J. T., Coleman H. M., Connor V., Winton D. J., Efstathiou S. 2008; A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974 [CrossRef]
    [Google Scholar]
  89. Reddehase M. J., Simon C. O., Seckert C. K., Lemmermann N., Grzimek N. K. 2008; Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331
    [Google Scholar]
  90. Redwine J. M., Buchmeier M. J., Evans C. F. 2001; In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 159:1219–1224 [CrossRef]
    [Google Scholar]
  91. Rice J., de Lima B., Stevenson F. K., Stevenson P. G. 2002; A gamma-herpesvirus immune evasion gene allows tumor cells in vivo to escape attack by cytotoxic T cells specific for a tumor epitope. Eur J Immunol 32:3481–3487 [CrossRef]
    [Google Scholar]
  92. Rickinson A. B., Moss D. J. 1997; Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15:405–431 [CrossRef]
    [Google Scholar]
  93. Rodrigues L., Pires de Miranda M., Caloca M. J., Bustelo X. R., Simas J. P. 2006; Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes. J Virol 80:6123–6135 [CrossRef]
    [Google Scholar]
  94. Rosa G. T., Gillet L., Smith C. M., de Lima B. D., Stevenson P. G. 2007; IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2:e560 [CrossRef]
    [Google Scholar]
  95. Roughan J. E., Thorley-Lawson D. A. 2009; The intersection of Epstein–Barr virus with the germinal center. J Virol 83:3968–3976 [CrossRef]
    [Google Scholar]
  96. Sample J., Henson E. B., Sample C. 1992; The Epstein–Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 66:4654–4661
    [Google Scholar]
  97. Sarawar S. R., Cardin R. D., Brooks J. W., Mehrpooya M., Hamilton-Easton A. M., Mo X. Y., Doherty P. C. 1997; Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J Virol 71:3916–3921
    [Google Scholar]
  98. Shannon-Lowe C. D., Neuhierl B., Baldwin G., Rickinson A. B., Delecluse H. J. 2006; Resting B cells as a transfer vehicle for Epstein–Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A 103:7065–7070 [CrossRef]
    [Google Scholar]
  99. Simmons A., Tscharke D. C. 1992; Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175:1337–1344 [CrossRef]
    [Google Scholar]
  100. Skehel J. J., Wiley D. C. 2000; Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569 [CrossRef]
    [Google Scholar]
  101. Smith C. M., Rosa G. T., May J. S., Bennett N. J., Mount A. M., Belz G. T., Stevenson P. G. 2006; CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirus in vivo . Eur J Immunol 36:3186–3197 [CrossRef]
    [Google Scholar]
  102. Smith C. M., Gill M. B., May J. S., Stevenson P. G. 2007; Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2:e1048 [CrossRef]
    [Google Scholar]
  103. Sokal E. M., Hoppenbrouwers K., Vandermeulen C., Moutschen M., Léonard P., Moreels A., Haumont M., Bollen A., Smets F., Denis M. 2007; Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196:1749–1753 [CrossRef]
    [Google Scholar]
  104. Sparks-Thissen R. L., Braaten D. C., Kreher S., Speck S. H., Virgin H. W. 2004; An optimized CD4 T-cell response can control productive and latent gammaherpesvirus infection. J Virol 78:6827–6835 [CrossRef]
    [Google Scholar]
  105. Sparks-Thissen R. L., Braaten D. C., Hildner K., Murphy T. L., Murphy K. M., Virgin H. W. 2005; CD4 T cell control of acute and latent murine gammaherpesvirus infection requires IFN gamma. Virology 338:201–208 [CrossRef]
    [Google Scholar]
  106. Stebbing J., Bourboulia D., Johnson M., Henderson S., Williams I., Wilder N., Tyrer M., Youle M., Imami N. other authors 2003; Kaposi's sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and target Darwinian positively selected autologous K1 epitopes. J Virol 77:4306–4314 [CrossRef]
    [Google Scholar]
  107. Steed A., Buch T., Waisman A., Virgin H. W. 2007; Gamma interferon blocks gammaherpesvirus reactivation from latency in a cell type-specific manner. J Virol 81:6134–6140 [CrossRef]
    [Google Scholar]
  108. Stevenson P. G. 2004; Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16:456–462 [CrossRef]
    [Google Scholar]
  109. Stevenson P. G., Efstathiou S. 2005; Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18:445–456 [CrossRef]
    [Google Scholar]
  110. Stevenson P. G., Hawke S., Sloan D. J., Bangham C. R. 1997a; The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 71:145–151
    [Google Scholar]
  111. Stevenson P. G., Bangham C. R., Hawke S. 1997b; Recruitment, activation and proliferation of CD8+ memory T cells in an immunoprivileged site. Eur J Immunol 27:3259–3268 [CrossRef]
    [Google Scholar]
  112. Stevenson P. G., Belz G. T., Altman J. D., Doherty P. C. 1998; Virus-specific CD8+ T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Natl Acad Sci U S A 95:15565–15570 [CrossRef]
    [Google Scholar]
  113. Stevenson P. G., Cardin R. D., Christensen J. P., Doherty P. C. 1999a; Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80:477–483
    [Google Scholar]
  114. Stevenson P. G., Belz G. T., Altman J. D., Doherty P. C. 1999b; Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol 29:1059–1067 [CrossRef]
    [Google Scholar]
  115. Stevenson P. G., Belz G. T., Castrucci M. R., Altman J. D., Doherty P. C. 1999c; A gamma-herpesvirus sneaks through a CD8+ T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A 96:9281–9286 [CrossRef]
    [Google Scholar]
  116. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740
    [Google Scholar]
  117. Stewart J. P., Micali N., Usherwood E. J., Bonina L., Nash A. A. 1999; Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17:152–157 [CrossRef]
    [Google Scholar]
  118. Sun C. C., Thorley-Lawson D. A. 2007; Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein–Barr virus BZLF1 promoter. J Virol 81:13566–13577 [CrossRef]
    [Google Scholar]
  119. Takahashi M. 2001; 25 years' experience with the Biken Oka strain varicella vaccine: a clinical overview. Paediatr Drugs 3:285–292 [CrossRef]
    [Google Scholar]
  120. Tarakanova V. L., Suarez F., Tibbetts S. A., Jacoby M. A., Weck K. E., Hess J. L., Speck S. H., Virgin H. W. 2005; Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB β 2 microglobulin-deficient mice. J Virol 79:14668–14679 [CrossRef]
    [Google Scholar]
  121. Thompson R. L., Preston C. M., Sawtell N. M. 2009; De novo synthesis of VP16 coordinates the exit from HSV latency in vivo . PLoS Pathog 5:e1000352 [CrossRef]
    [Google Scholar]
  122. Thomsen A. R., Johansen J., Marker O., Christensen J. P. 1996; Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol 157:3074–3080
    [Google Scholar]
  123. Thorley-Lawson D. A. 2001; Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82 [CrossRef]
    [Google Scholar]
  124. Thorley-Lawson D. A., Geilinger K. 1980; Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein–Barr virus neutralize infectivity. Proc Natl Acad Sci U S A 77:5307–5311 [CrossRef]
    [Google Scholar]
  125. Tibbetts S. A., van Dyk L. F., Speck S. H., Virgin H. W. 2002; Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus. J Virol 76:7125–7132 [CrossRef]
    [Google Scholar]
  126. Tibbetts S. A., McClellan J. S., Gangappa S., Speck S. H., Virgin H. W. 2003; Effective vaccination against long-term gammaherpesvirus latency. J Virol 77:2522–2529 [CrossRef]
    [Google Scholar]
  127. Tibbetts S. A., Suarez F., Steed A. L., Simmons J. A., Virgin H. W. 2006; A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 353:210–219 [CrossRef]
    [Google Scholar]
  128. Tomazin R., van Schoot N. E., Goldsmith K., Jugovic P., Sempé P., Früh K., Johnson D. C. 1998; Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J Virol 72:2560–2563
    [Google Scholar]
  129. Topham D. J., Doherty P. C. 1998; Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J Virol 72:882–885
    [Google Scholar]
  130. Turner A., Bruun B., Minson T., Browne H. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–875
    [Google Scholar]
  131. Usherwood E. J., Ross A. J., Allen D. J., Nash A. A. 1996; Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 77:627–630 [CrossRef]
    [Google Scholar]
  132. Usherwood E. J., Ward K. A., Blackman M. A., Stewart J. P., Woodland D. L. 2001; Latent antigen vaccination in a model gammaherpesvirus infection. J Virol 75:8283–8288 [CrossRef]
    [Google Scholar]
  133. Usherwood E. J., Meadows S. K., Crist S. G., Bellfy S. C., Sentman C. L. 2005; Control of murine gammaherpesvirus infection is independent of NK cells. Eur J Immunol 35:2956–2961 [CrossRef]
    [Google Scholar]
  134. van Berkel V., Barrett J., Tiffany H. L., Fremont D. H., Murphy P. M., McFadden G., Speck S. H., Virgin H. W. 2000; Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol 74:6741–6747 [CrossRef]
    [Google Scholar]
  135. Verjans G. M., Hintzen R. Q., van Dun J. M., Poot A., Milikan J. C., Laman J. D., Langerak A. W., Kinchington P. R., Osterhaus A. D. 2007; Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 104:3496–3501 [CrossRef]
    [Google Scholar]
  136. Virgin H. W., Speck S. H. 1999; Unravelling immunity to gamma-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol 11:371–379 [CrossRef]
    [Google Scholar]
  137. Virgin H. W., Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904
    [Google Scholar]
  138. Voo K. S., Fu T., Wang H. Y., Tellam J., Heslop H. E., Brenner M. K., Rooney C. M., Wang R. F. 2004; Evidence for the presentation of major histocompatibility complex class I-restricted Epstein–Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med 199:459–470 [CrossRef]
    [Google Scholar]
  139. Wallace M. E., Keating R., Heath W. R., Carbone F. R. 1999; The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73:7619–7626
    [Google Scholar]
  140. Weck K. E., Dal Canto A. J., Gould J. D., O'Guin A. K., Roth K. A., Saffitz J. E., Speck S. H., Virgin H. W. 1997; Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med 3:1346–1353 [CrossRef]
    [Google Scholar]
  141. Wilson S. J., Tsao E. H., Webb B. L., Ye H., Dalton-Griffin L., Tsantoulas C., Gale C. V., Du M. Q., Whitehouse A., Kellam P. 2007; X box binding protein XBP-1s transactivates the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol 81:13578–13586 [CrossRef]
    [Google Scholar]
  142. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989a; The Epstein–Barr virus: host balance in acute infectious mononucleosis patients receiving acyclovir anti-viral therapy. Int J Cancer 43:61–66 [CrossRef]
    [Google Scholar]
  143. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989b; Epstein–Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer 43:67–71 [CrossRef]
    [Google Scholar]
  144. Yewdell J. W., Hill A. B. 2002; Viral interference with antigen presentation. Nat Immunol 3:1019–1025 [CrossRef]
    [Google Scholar]
  145. Yin Y., Manoury B., Fahraeus R. 2003; Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science 301:1371–1374 [CrossRef]
    [Google Scholar]
  146. York I. A., Roop C., Andrews D. W., Riddell S. R., Graham F. L., Johnson D. C. 1994; A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–535 [CrossRef]
    [Google Scholar]
  147. Zinkernagel R. M., Hengartner H. 2006; Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211:310–319 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013300-0
Loading
/content/journal/jgv/10.1099/vir.0.013300-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error