1887

Abstract

Raccoon dog is one of the suspected intermediate hosts of severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, the angiotensin-converting enzyme 2 (ACE2) gene of raccoon dog (rdACE2) was cloned and sequenced. The amino acid sequence of rdACE2 has identities of 99.3, 89.2, 83.9 and 80.4 % to ACE2 proteins from dog, masked palm civet (pcACE2), human (huACE2) and bat, respectively. There are six amino acid changes in rdACE2 compared with huACE2, and four changes compared with pcACE2, within the 18 residues of ACE2 known to make direct contact with the SARS-CoV S protein. A HeLa cell line stably expressing rdACE2 was established; Western blot analyses and an enzyme-activity assay indicated that the cell line expressed ACE2 at a similar level to two previously established cell lines that express ACE2 from human and masked palm civet, respectively. Human immunodeficiency virus-backboned pseudoviruses expressing spike proteins derived from human SARS-CoV or SARS-CoV-like viruses of masked palm civets and raccoon dogs were tested for their entry efficiency into these cell lines. The results showed that rdACE2 is a more efficient receptor for human SARS-CoV, but not for SARS-CoV-like viruses of masked palm civets and raccoon dogs, than huACE2 or pcACE2. This study provides useful data to elucidate the role of raccoon dog in SARS outbreaks.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013490-0
2009-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2695.html?itemId=/content/journal/jgv/10.1099/vir.0.013490-0&mimeType=html&fmt=ahah

References

  1. Douglas G. C., O'Bryan M. K., Hedger M. P., Lee D. K., Yarski M. A., Smith A. I., Lew R. A. 2004; The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145:4703–4711 [CrossRef]
    [Google Scholar]
  2. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L. other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  3. Fouchier R. A., Kuiken T., Schutten M., van Amerongen G., van Doornum G. J., van den Hoogen B. G., Peiris M., Lim W., Stohr K., Osterhaus A. D. 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  4. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J. other authors 2003; Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278 [CrossRef]
    [Google Scholar]
  5. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  6. Kan B., Wang M., Jing H., Xu H., Jiang X., Yan M., Liang W., Zheng H., Wan K. other authors 2005; Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 79:11892–11900 [CrossRef]
    [Google Scholar]
  7. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  8. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  9. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [CrossRef]
    [Google Scholar]
  10. Li F. 2008; Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol 82:6984–6991 [CrossRef]
    [Google Scholar]
  11. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  12. Li W., Greenough H. T. C., Moore M. J., Vasilieva N., Somasundaran M., Sullivan J. L., Farzan M., Choe H. 2004; Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J Virol 78:11429–11433 [CrossRef]
    [Google Scholar]
  13. Li F., Li W., Farzan M., Harrison S. C. 2005; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868 [CrossRef]
    [Google Scholar]
  14. Li W., Zhang C., Sui J., Kuhn J. H., Moore M. J., Luo S., Wong S. K., Huang I. C., Xu K. other authors 2005a; Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:1634–1643 [CrossRef]
    [Google Scholar]
  15. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z. other authors 2005b; Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679 [CrossRef]
    [Google Scholar]
  16. Li W., Wong S. K., Li F., Kuhn J. H., Huang I. C., Choe H., Farzan M. 2006; Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol 80:4211–4219 [CrossRef]
    [Google Scholar]
  17. Liu L., Fang Q., Deng F., Wang H. Z., Yi C. E., Ba L., Yu W. J., Lin R. D., Li T. S., Hu Z. H., Ho D. D., Zhang L. Q., Chen Z. W. 2007; Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus. J Virol 81:4694–4700 [CrossRef]
    [Google Scholar]
  18. Marra M. A., Jones S. J., Astell C. R., Holt R. A., Brooks-Wilson A., Butterfield Y. S., Khattra J., Asano J. K., Barber S. A. & other authors; 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  19. Normile D., Enserink M. 2003; SARS in China. Tracking the roots of a killer. Science 301:297–299 [CrossRef]
    [Google Scholar]
  20. Peiris J. S., Lai S. T., Poon L. L., Guan Y., Yam L. Y., Lim W., Nicholls J., Yee W. K., Yan W. W. other authors 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  21. Poon L. L., Chu D. K., Chan K. H., Wong O. K., Ellis T. M., Leung Y. H., Lau S. K., Woo P. C., Suen K. Y. & other authors; 2005; Identification of a novel coronavirus in bats. J Virol 79:2001–2009 [CrossRef]
    [Google Scholar]
  22. Qu X. X., Hao P., Song X. J., Jiang S. M., Liu Y. X., Wang P. G., Rao X., Song H. D., Wang S. Y. other authors 2005; Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J Biol Chem 280:29588–29595 [CrossRef]
    [Google Scholar]
  23. Ren W., Qu X., Li W., Han Z., Yu M., Zhou P., Zhang S. Y., Wang L. F., Deng H., Shi Z. 2008; Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol 82:1899–1907 [CrossRef]
    [Google Scholar]
  24. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Penaranda S., Bankamp B., Maher K. other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  25. Song H. D., Tu C. C., Zhang G. W., Wang S. Y., Zheng K., Lei L. C., Chen Q. X., Gao Y. W., Zhou H. Q. other authors 2005; Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102:2430–2435 [CrossRef]
    [Google Scholar]
  26. Subbarao K., McAuliffe J., Vogel L., Fahle G., Fischer S., Tatti K., Packard M., Shieh W. J., Zaki S., Murphy B. 2004; Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78:3572–3577 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Tu C., Crameri G., Kong X., Chen J., Sun Y., Yu M., Xiang H., Xia X., Liu S. other authors 2004; Antibodies to SARS coronavirus in civets. Emerg Infect Dis 10:2244–2248 [CrossRef]
    [Google Scholar]
  29. Wang M., Jing H. Q., Xu H. F., Jiang X. G., Kan B., Liu Q. Y., Wan K. L., Cui B. Y., Zheng H. other authors 2005; Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi 26:84–87 (in Chinese
    [Google Scholar]
  30. Wentworth D. E., Gillim-Ross L., Espina N., Bernard K. A. 2004; Mice susceptible to SARS coronavirus. Emerg Infect Dis 10:1293–1296 [CrossRef]
    [Google Scholar]
  31. WHO 2004; Summary of probable SARS cases with onset of illness from 1 November; 2002 to 31 July 2003 Accessed 21 April 2004, at http://www.who.int/csr/sars/country/table2004_04_21/en/index.html
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013490-0
Loading
/content/journal/jgv/10.1099/vir.0.013490-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error