1887

Abstract

The genus , which contains approximately 70 single-stranded, positive-sense RNA viruses, represents a unique model for studying the evolution of vector-borne disease, as it includes viruses that are mosquito-borne, tick-borne or have no known vector. Both theoretical work and field studies suggest the existence of a large number of undiscovered flaviviruses. Recently, the first isolation of cell fusing agent virus (CFAV) was reported from a natural mosquito population in Puerto Rico, and sequences related to CFAV have been discovered in mosquitoes from Thailand. CFAV had previously been isolated from a mosquito cell line in 1975 and represented the only known ‘insect-only’ flavivirus, appearing to replicate in insect cells alone. A second member of the ‘insect-only’ group, Kamiti River virus (KRV), was isolated from Kenyan mosquitoes in 2003. A third tentative member of the ‘insect-only’ group, Culex flavivirus (CxFV), was first isolated in 2007 from Japan and further strains have subsequently been reported from the Americas. We report the discovery, isolation and characterization of two novel ‘insect-only’ flaviviruses from Entebbe, Uganda: a novel lineage tentatively designated Nakiwogo virus (NAKV) and a new strain of CxFV. The individual mosquitoes from which these strains were isolated, identified retrospectively by using a reference molecular phylogeny generated using voucher specimens from the region, were and , respectively. This represents the first isolation, to our knowledge, of a novel insect-only flavivirus from a species and the first isolation of a strain of CxFV from Africa.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014183-0
2009-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2669.html?itemId=/content/journal/jgv/10.1099/vir.0.014183-0&mimeType=html&fmt=ahah

References

  1. Baqar S., Hayes C. G., Murphy J. R., Watts D. M. 1993; Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am J Trop Med Hyg 48:757–762
    [Google Scholar]
  2. Cammisa-Parks H., Cisar L. A., Kane A., Stollar V. 1992; The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189:511–524 [CrossRef]
    [Google Scholar]
  3. Cook S., Bennett S. N., Holmes E. C., De Chesse R., Moureau G., de Lamballerie X. 2006; Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87:735–748 [CrossRef]
    [Google Scholar]
  4. Crabtree M. B., Sang R. C., Stollar V., Dunster L. M., Miller B. R. 2003; Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch Virol 148:1095–1118 [CrossRef]
    [Google Scholar]
  5. Crochu S., Cook S., Attoui H., Charrel R., De Cheese R., Belhouchet M., Lemasson J.-J., de Micco P., de Lamballarie X. 2004; Sequence of flavivirus-related RNA viruses persist in DNA form in the genome of Aedes spp. mosquitoes. J Gen Virol 85:1971–1980 [CrossRef]
    [Google Scholar]
  6. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [CrossRef]
    [Google Scholar]
  7. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [CrossRef]
    [Google Scholar]
  8. Edwards F. W. 1941 Mosquitoes of the Ethiopian Region III – Culicine Adults and Pupae London: British Museum;
    [Google Scholar]
  9. Emonet S., Grard G., Brisbarre N., Moureau G., Temmam S., Charrel R., de Lamballerie X. 2006; LoPPS: a long PCR product sequencing method for rapid characterisation of long amplicons. Biochem Biophys Res Commun 344:1080–1085 [CrossRef]
    [Google Scholar]
  10. Emonet S. F., Grard G., Brisbarre N. M., Moureau G. N., Temmam S., Charrel R. N., de Lamballerie X. 2007; Long PCR product sequencing (LoPPS): a shotgun-based approach to sequence long PCR products. Nat Protoc 2:340–346 [CrossRef]
    [Google Scholar]
  11. Farfan-Ale J. A., Loroño-Pino M. A., Garcia-Rejon J. E., Hovav E., Powers A. M., Lin M., Dorman K. S., Platt K. B., Bartholomay L. C. other authors 2009; Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 80:85–95
    [Google Scholar]
  12. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994; DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–297
    [Google Scholar]
  13. Gaunt M. W., Gould E. 2005; Rapid subgroup identification of the flaviviruses using degenerate primer E gene RT-PCR and site specific restriction enzyme analysis. J Virol Methods 128:113–117 [CrossRef]
    [Google Scholar]
  14. Gaunt M. W., Sall A. A., de Lamballarie X., Falconar A. K. I., Dzihivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876
    [Google Scholar]
  15. Gould E. A., de Lamballerie X., Zanotto P. M., Holmes E. C. 2003; Origins, evolution, and vector/host coadaptations within the genus Flavivirus . Adv Virus Res 59:277–314
    [Google Scholar]
  16. Grard G., Moureau G., Charrel R. N., Lemasson J.-J., Gonzalez J.-P., Gallian P., Gritsun T., Holmes E. C., Gould E. A., de Lamballerie X. 2007; Genetic characterisation of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361:80–92 [CrossRef]
    [Google Scholar]
  17. Hebert P. D. N., Cywinska A., Ball S. L., deWaard J. R. 2003; Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321 [CrossRef]
    [Google Scholar]
  18. Hoshino K., Isawa H., Tsuda Y., Kazuhiko Y., Sasaki T., Yuda M., Takasaki T., Kobayashi M., Sawabe K. 2007; Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359:405–414 [CrossRef]
    [Google Scholar]
  19. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  20. Kihara Y., Satho T., Eshita Y., Sakai K., Kotaki A., Takasaki T., Rongsriyam Y., Komalamisra N., Srisawat R. other authors 2007; Rapid determination of viral RNA sequences in mosquitoes collected in the field. J Virol Methods 146:372–374 [CrossRef]
    [Google Scholar]
  21. Kim D. Y., Guzman H., Bueno R. Jr, Dennett J. A., Auguste A. J., Carrington C. V. F., Popov V. L., Weaver S. C., Beasley D. W. C., Tesh R. B. 2009; Characterization of Culex flavivirus ( Flaviviridae ) strains isolated from mosquitoes in the United States and Trinidad. Virology 386:154–159 [CrossRef]
    [Google Scholar]
  22. Kuno G. 2007; Host range specificity of flaviviruses: correlation with in vitro replication. J Med Entomol 44:93–101 [CrossRef]
    [Google Scholar]
  23. Kuno G., Chang G.-J. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus . J Virol 72:73–83
    [Google Scholar]
  24. Lounibos L. P. 2002; Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266 [CrossRef]
    [Google Scholar]
  25. Lunt D. H., Zhang D.-X., Szymura J. M., Hewitt G. M. 1996; The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5:153–165 [CrossRef]
    [Google Scholar]
  26. Morales-Betoulle M. E., Monzón Pineda M. L., Sosa S. M., Panella N., López M. R., Cordón-Rosales C., Komar N., Powers A., Johnson B. W. 2008; Culex flavivirus isolates from mosquitoes in Guatemala. J Med Entomol 45:1187–1190 [CrossRef]
    [Google Scholar]
  27. Moureau G., Temmam S., Gonzalez J. P., Charrel R. N., Grard G., de Lamballerie X. 2007; A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis 7:467–478 [CrossRef]
    [Google Scholar]
  28. Moureau G., Ninove L., Izri A., Cook S., de Lamballerie X., Charrel R. N. 2009; Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis in press doi: 10.1089/vbz.2008.0216
    [Google Scholar]
  29. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  30. Pybus O. G., Rambaut A., Holmes E., Harvey P. H. 2002; New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol 51:881–888 [CrossRef]
    [Google Scholar]
  31. Ratnasingham S., Hebert P. D. N. 2007; bold: the Barcode of Life Data System. Mol Ecol Notes 7:355–364 [CrossRef]
    [Google Scholar]
  32. Reinert J. F. 2000; New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. J Am Mosq Control Assoc 16:175–188
    [Google Scholar]
  33. Reinert J. F., Harbach R. E., Kitching I. J. 2004; Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages. Zool J Linn Soc 142:289–368 [CrossRef]
    [Google Scholar]
  34. Reinert J. F., Harbach R. E., Kitching I. J. 2006; Phylogeny and classification of Finlaya and allied taxa (Diptera: Culicidae: Aedini) based on morphological data from all life stages. Zool J Linn Soc 148:1–101 [CrossRef]
    [Google Scholar]
  35. Reinert J. F., Harbach R. E., Kitching I. J. 2008; Phylogeny and classification of Ochlerotatus and allied taxa (Diptera: Culicidae: Aedini) based on morphological data from all life stages. Zool J Linn Soc 153:29–114 [CrossRef]
    [Google Scholar]
  36. Sallum M. A. M., Schultz T. R., Foster P. G., Aronstein K., Wirtz R. A., Wilkerson R. C. 2002; Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst Entomol 27:361–382 [CrossRef]
    [Google Scholar]
  37. Sang R. C., Gichogo A., Gachoya J., Dunster M. D., Ofula V., Hunt A. R., Crabtree M. B., Miller B. R., Dunster L. M. 2003; Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148:1085–1093 [CrossRef]
    [Google Scholar]
  38. Service M. W. 1990 Handbook to the Afrotropical Toxorhynchitine and Culicine Mosquitoes, excepting Aedes and Culex London: British Museum;
    [Google Scholar]
  39. Severini C., Silvestrini F., Mancini P., La Rosa G., Marinucci M. 1996; Sequence and secondary structure of the rDNA second internal transcribed spacer in the sibling species Culex pipiens L. and Cx. quinquefasciatus Say (Diptera: Culicidae). Insect Mol Biol 5:181–186 [CrossRef]
    [Google Scholar]
  40. Stollar V., Thomas V. 1975; An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64:367–377 [CrossRef]
    [Google Scholar]
  41. Swofford D. L. 2000 paup*: phylogenetic analysis using parsimony (*and other methods), v4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  42. Talavera G., Castresana J. 2007; Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014183-0
Loading
/content/journal/jgv/10.1099/vir.0.014183-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error