1887

Abstract

Crimean–Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic, tick-borne member of the family and the genus . To better elucidate the pathogenesis of CCHFV, we analysed the host innate immune response induced in antigen-presenting cells (APCs) infected by CCHFV. Monocyte-derived dendritic cells (DCs) and macrophages (MPs) were both shown to be permissive for CCHFV and to replicate the virus, as monitored by genomic and antigenomic strand quantification. Virus replication was, however, controlled, corroborating an efficient alpha interferon-induced response. The upregulation of CD-83 and CD-86 indicated that CCHFV induced a partial maturation of DCs, which were also shown to activate the secretion of interleukin (IL)-6 and IL-8, but no tumour necrosis factor alpha (TNF-). On the other hand, in MPs, CCHFV infection elicited a high IL-6 and TNF- response and a moderate chemokine response. Nevertheless, when we compared these APC responses with those seen after infection with Dugbe virus (DUGV), a mildly pathogenic virus genetically close to CCHFV, we found that, in spite of some similarities, DUGV induced a higher cytokine/chemokine response in MPs. These results suggest that CCHFV is able to inhibit the activation of inflammatory mediators selectively in infection and that these differences could be relevant in pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015701-0
2010-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/189.html?itemId=/content/journal/jgv/10.1099/vir.0.015701-0&mimeType=html&fmt=ahah

References

  1. Andersson, I., Bladh, L., Mousavi-Jazi, M., Magnusson, K. E., Lundkvist, A., Haller, O. & Miramazi, A.(2004). Human MxA protein inhibits the replication of Crimean–Congo hemorrhagic fever virus. J Virol 78, 4323–4329.[CrossRef] [Google Scholar]
  2. Andersson, I., Lundkvist, A., Haller, O. & Mirazimi, A.(2006). Type I interferon inhibits Crimean–Congo hemorrhagic fever virus in human target cells. J Med Virol 78, 216–222.[CrossRef] [Google Scholar]
  3. Andersson, I., Karlberg, H., Mousavi-Jazi, M., Martinez-Sobrido, L., Weber, F. & Mirazimi, A.(2008). Crimean–Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol 80, 1397–1404.[CrossRef] [Google Scholar]
  4. Baize, S., Kaplon, J., Faure, C., Pannetier, D., Georges-Courbot, M. C. & Deubel, V.(2004). Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol 172, 2861–2869.[CrossRef] [Google Scholar]
  5. Baize, S., Pannetier, D., Faure, C., Marianneau, P., Marendat, I., Georges-Courbot, M. C. & Deubel, V.(2006). Role of interferons in the control of Lassa virus replication in human dendritic cells and macrophages. Microbes Infect 8, 1194–1202.[CrossRef] [Google Scholar]
  6. Basler, C. F., Wang, X., Muhlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., Garcia-Sastre, A. & Palese, P.(2000). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97, 12289–12294.[CrossRef] [Google Scholar]
  7. Bosio, C. M., Aman, M. J., Grognan, C., Hogan, R., Ruthel, G., Negley, D., Mahamaddzadeh, M., Bavari, S. & Schmaljohn, A.(2003). Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188, 1630–1638.[CrossRef] [Google Scholar]
  8. Bosio, C. M., Moore, B. D., Warfield, K. L., Ruthel, G., Mahamaddzadeh, M., Aman, M. J. & Bavari, S.(2004). Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 326, 280–287.[CrossRef] [Google Scholar]
  9. Bray, M.(2007). Comparative pathogenesis of Crimean–Congo hemorrhagic fever and Ebola hemorrhagic fever. In Crimean–Congo Hemorrhagic Fever: a Global Perspective, pp. 221–231. Edited by O. Ergonul & C. A. Whitehouse. Dordrecht: Springer.
  10. Bray, M. & Geisbert, T. W.(2005). Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol 37, 1560–1566.[CrossRef] [Google Scholar]
  11. Burt, F. J., Spencer, D. C., Leman, P. A., Patterson, B. & Swanepoel, R.(1996). Investigation of tick-borne viruses as pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged thrombocytopenia. Epidemiol Infect 116, 353–361.[CrossRef] [Google Scholar]
  12. Burt, F. J., Swanepoel, R., Shieh, W. J., Smith, J. F., Leman, P. A., Greer, P. W., Coffield, L. M., Rollin, P. E., Ksiazek, T. G. & other authors(1997). Immunohistochemical and in situ localization of Crimean–Congo hemorragic fever virus in human tissues and implications for CCHF pathogenesis. Arch Pathol Lab Med 121, 839–846. [Google Scholar]
  13. Casals, J.(1969). Antigenic similarities between the virus causing Crimean hemorrhagic fever and Congo virus. Proc Soc Exp Biol Med 131, 233–236.[CrossRef] [Google Scholar]
  14. Causey, O. R.(1970). No. 226, Dugbe (DUG). Strain: AR 1792. Am J Trop Med Hyg 19, 1123–1124. [Google Scholar]
  15. Cevik, M. A., Erbay, A., Bodur, H., Eren, S. S., Akinci, E., Onguru, P. & Kubar, A.(2007). Viral load as a predictor outcome in Crimean–Congo hemorrhagic fever. Clin Infect Dis 45, e96–e100.[CrossRef] [Google Scholar]
  16. Cevik, M. A., Erbay, A., Bodur, H., Gulderen, E., Bastug, A., Kubar, A. & Akinci, E.(2008). Clinical and laboratory features of Crimean–Congo hemorrhagic fever: predictors of fatality. Int J Infect Dis 12, 374–379.[CrossRef] [Google Scholar]
  17. Chinikar, S., Goya, M. M., Shirzadi, M. R., Ghiasi, S. M., Mirahmadi, R., Haeri, A., Moradi, M., Afzali, N., Rahpeyma, M. & other authors(2008). Surveillance and laboratory detection system of Crimean–Congo haemorrhagic fever in Iran. Transbound Emerg Dis 55, 200–204.[CrossRef] [Google Scholar]
  18. Christova, I., Di Caro, A., Papa, A., Castelli, C., Andonova, L., Kalvatchev, N., Papadimitriou, E., Carletti, F., Mohareb, E. & other authors(2009). Crimean–Congo hemorrhagic fever, southwestern Bulgaria. Emerg Infect Dis 15, 983–985.[CrossRef] [Google Scholar]
  19. Chumakov, M. P.(1945). A new tick-borne virus disease – Crimean hemorrhagic fever. In Crimean Hemorrhagic Fever (Acute Infectious Capillary Toxicosis), p. 13. Edited by A. A. Sokolov, M. P. Chumakov & A. A. Kolachev. Simferopol, Russia: Izd. Otd. Primorskoi Armii.
  20. Chumakov, M. P.(1974). Contribution to 30 years of investigation of Crimean hemorrhagic fever. Med Virol 22, 5–18. [Google Scholar]
  21. Connolly-Andersen, A. M., Magnusson, K. E. & Mirazimi, A.(2007). Basolateral entry and release of Crimean–Congo hemorrhagic fever virus in polarized MDCK-1 cells. J Virol 81, 2158–2164.[CrossRef] [Google Scholar]
  22. Connolly-Andersen, A. M., Douagi, I. & Mirazimi, A.(2009). Crimean Congo hemorrhagic fever virus infects human monocyte-derived dendritic cells. Virology 390, 157–162.[CrossRef] [Google Scholar]
  23. Elliott, R. M., Bouloy, M., Calisher, C. H., Goldbach, R., Moyer, J. T., Nichol, S. T., Pettersson, R., Plyuisnin, A. & Schmaljohn, C. S.(2000). Family Bunyaviridae. In Virus Taxonomy: Classification and Nomenclature. Seventh Report of the International Commitee on Taxonomy of Viruses, pp. 599–621. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. New York: Academic Press.
  24. Ergonul, O.(2006). Crimean–Congo hemorrhagic fever. Lancet Infect Dis 6, 203–214.[CrossRef] [Google Scholar]
  25. Ergonul, O.(2007). Treatment of Crimean–Congo hemorrhagic fever. Antiviral Res 78, 125–131. [Google Scholar]
  26. Ergonul, O., Tuncbilek, S., Baykam, N., Celikbas, A. & Dokuzoguz, B.(2006). Evaluation of serum levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha in patients with Crimean–Congo hemorrhagic fever. J Infect Dis 193, 941–944.[CrossRef] [Google Scholar]
  27. Frias-Staheli, N., Giannakopoulos, N. V., Kikkert, M., Taylor, S. L., Bridgen, A., Paragas, J. J., Richt, J. A., Rowland, R. R., Schmaljohn, C. S. & other authors(2007). Ovarian tumor (OTU)-domain containing viral proteases evade ubiquitin- and ISG-15-dependent innate immune responses. Cell Host Microbe 2, 404–416.[CrossRef] [Google Scholar]
  28. Geisbert, T. W., Hensley, L. E., Larsen, T., Young, H. A., Reed, D. S., Geisbert, J. B., Scott, D. P., Kagan, E., Jahrling, P. B. & Davis, K. J.(2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163, 2347–2370.[CrossRef] [Google Scholar]
  29. Gowen, B. B. & Holbrook, M. R.(2008). Animal models of highly pathogenic RNA viral infections: hemorrhagic fever viruses. Antiviral Res 78, 79–90.[CrossRef] [Google Scholar]
  30. Guilherme, J. M., Gonella-Legall, C., Legall, F., Nakoume, E. & Vincent, J.(1996). Seroprevalence of five arboviruses in Zebu cattle in the Central African Republic. Trans R Soc Trop Med Hyg 90, 31–33.[CrossRef] [Google Scholar]
  31. Gupta, M., Manhanty, S., Ahmed, R. & Rollin, P.(2001). Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-αin vitro. Virology 284, 20–25.[CrossRef] [Google Scholar]
  32. Habjan, M., Andersson, I., Klingström, J, Schümann, M., Martin, A., Zimmermann, P., Wagner, W., Pichlmair, A., Schneider, U. & other authors(2008). Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One 3, e2032[CrossRef] [Google Scholar]
  33. Honig, J. E., Osborne, J. C. & Nichol, S. T.(2004). The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318, 10–16.[CrossRef] [Google Scholar]
  34. Katze, M. G., He, Y. & Gale, M., Jr(2002). Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687.[CrossRef] [Google Scholar]
  35. Lukashevich, I. S., Maryansova, R., Vladyko, A. S., Nashkevich, N., Koleda, S., Djavani, M., Horejsh, D., Voitenok, N. N. & Salvato, M. S.(1999). Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-α gene expression. J Med Virol 59, 552–560.[CrossRef] [Google Scholar]
  36. Mohamadzadeh, M., Chen, L., Olinger, G. G., Pratt, W. D. & Schmaljohn, A. L.(2006). Filoviruses and the balance of innate, adaptive and inflammatory responses. Viral Immunol 19, 602–612.[CrossRef] [Google Scholar]
  37. Onguru, P., Akgul, E. O., Akinci, E., Yaman, H., Kurt, Y. G., Erbay, A., Bayazit, F. N., Bodur, H., Erbil, K. & other authors(2008). High serum levels of neopterin in patients with Crimean–Congo hemorrhagic fever and its relation with mortality. J Infect 56, 366–370.[CrossRef] [Google Scholar]
  38. Papa, A., Bino, S., Velo, E., Harxhi, A., Kota, M. & Antoniadis, A.(2006). Cytokine levels in Crimean–Congo hemorrhagic fever. J Clin Virol 36, 272–276.[CrossRef] [Google Scholar]
  39. Papa, A., Bino, S., Papadimitriou, E., Velo, E., Dhimolea, M. & Antoniadis, A.(2008). Suspected Crimean Congo haemorrhagic fever cases in Albania. Scand J Infect Dis 40, 978–980.[CrossRef] [Google Scholar]
  40. Rai, M. A., Khanani, M. R., Warraich, H. J., Hayat, A. & Ali, S. H.(2008). Crimean–Congo hemorrhagic fever in Paskistan. J Med Virol 80, 1004–1006.[CrossRef] [Google Scholar]
  41. Robertson, S. J., Mitzel, D. N., Taylor, R. T., Best, S. M. & Bloom, M. E.(2009). Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures. Immunol Res 43, 172–186.[CrossRef] [Google Scholar]
  42. Sang, R., Onyango, C., Gachoya, J., Mabinda, E., Konongoi, S., Ofula, V., Dunster, L., Okoth, F., Coldren, R. & other authors(2006). Tickborne arbovirus surveillance in marquet livestock, Nairobi, Kenya. Emerg Infect Dis 12, 1074–1080.[CrossRef] [Google Scholar]
  43. Schwarz, T. F., Nitschko, H., Jager, G., Nsanze, H., Longson, M., Pugh, R. N. & Abraham, A. K.(1995). Crimean–Congo hemorrhagic fever in Oman. Lancet 346, 1230 [Google Scholar]
  44. Swanepoel, R., Shepherd, A. J., Leman, P. A., Shepherd, S. P., McGillivray, G. M., Erasmus, M. J., Searle, L. A. & Gill, D. E.(1987). Epidemiologic and clinical features of Crimean–Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg 36, 120–132. [Google Scholar]
  45. Swanepoel, R., Gill, D. E., Shepherd, A. J., Leman, P. A., Mynhardt, J. H. & Harvey, S.(1989). The clinical pathology of Crimean–Congo hemorrhagic fever. Rev Infect Dis 11, S794–S800.[CrossRef] [Google Scholar]
  46. Tignor, G. H. & Hanham, C. A.(1993). Ribavirin efficacy in an in vivo model of Crimean–Congo hemorrhagic fever virus (CCHF) infection. Antiviral Res 22, 309–325.[CrossRef] [Google Scholar]
  47. Weber, F. & Mirazimi, A.(2008). Interferon and cytokine responses to Crimean–Congo hemorrhagic fever virus; an emerging and neglected viral zoonosis. Cytokine Growth Factor Rev 19, 395–404.[CrossRef] [Google Scholar]
  48. Yilmaz, M., Kemalettin, A., Akdogan, E., Sucu, N., Sonmez, M., Omay, S. B. & Koksal, I.(2008). Peripheral blood natural killer cells in Crimean–Congo hemorrhagic fever. J Clin Virol 42, 415–417.[CrossRef] [Google Scholar]
  49. Zeller, H. G., Cornet, J. P. & Camicas, J. L.(1994). Experimental transmission of Crimean–Congo hemorrhagic fever virus by west African wild ground-feeding birds to Hyalomma marginatum rufipes ticks. Am J Trop Med Hyg 50, 676–681. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015701-0
Loading
/content/journal/jgv/10.1099/vir.0.015701-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 189–198

Immunofluorescence of CCHFV-infected DCs and MPs at 24 h p.i.

DUGV induces phenotypic modifications and cytokine release in infected DCs and MPs.

[ Single PDF file] (1.3 MB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error