1887

Abstract

Recent research has revealed that some plant viruses, like many animal viruses, have measurably evolving populations. Most of these viruses have single-stranded positive-sense RNA genomes, but a few have single-stranded DNA genomes. The studies show that extant populations of these viral species are only decades to centuries old. The genera in which they are placed have diverged since agriculture was invented and spread around the world during the Holocene period. We suggest that this is not mere coincidence but evidence that the conditions generated by agriculture during this era have favoured particular viruses. There is also evidence, albeit less certain, that some plant viruses, including a few shown to have measurably evolving populations, have much more ancient origins. We discuss the possible reasons for this clear discordance between short- and long-term evolutionary rate estimates and how it might result from a large timescale dependence of the evolutionary rates. We also discuss briefly why it is useful to know the rates of evolution of plant viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015925-0
2010-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/13.html?itemId=/content/journal/jgv/10.1099/vir.0.015925-0&mimeType=html&fmt=ahah

References

  1. Almeida, R. P. P., Bennett, G. M., Anhalt, M. D., Tsai, C.-W. & O'Grady, P.(2009). Spread of an introduced vector-borne banana virus in Hawaii. Mol Ecol 18, 136–146.[CrossRef] [Google Scholar]
  2. Alonso-Prados, J. L., Luis-Arteaga, M., Alvarez, J. M., Moriones, E., Batlle, A., Laviña, A., García-Arenal, F. & Fraile, A.(2003). Epidemics of aphid-transmitted viruses in melon crops in Spain. Eur J Plant Pathol 109, 129–138.[CrossRef] [Google Scholar]
  3. Arguello-Astorga, G., Ascencio-Ibáñez, J. T., Dallas, M. B., Orozco, B. M. & Hanley-Bowdoin, L.(2007). High-frequency reversion of geminivirus replication protein mutants during infection. J Virol 81, 11005–11015.[CrossRef] [Google Scholar]
  4. Ashby, M. K., Warry, A., Bejarano, E. R., Khashoggi, A., Burrell, M. & Lichtenstein, C.(1997). Analysis of multiple copies of geminiviral DNA in the genomes of four closely related Nicotiana species suggest a unique integration event. Plant Mol Biol 35, 313–321.[CrossRef] [Google Scholar]
  5. Baker, P. F.(1960). Aphid behaviour on healthy and on yellows-virus-infected sugar beet. Ann Appl Biol 48, 384–391.[CrossRef] [Google Scholar]
  6. Bejarano, E. R., Khashoggi, A., Witty, M. & Lichtenstein, C.(1996). Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci U S A 93, 759–764.[CrossRef] [Google Scholar]
  7. Bellwood, P.(2005).First Farmers: the Origins of Agricultural Societies. Malden, MA: Blackwell Publishing.
  8. Betancourt, M., Fereres, A., Fraile, A. & García-Arenal, F.(2008). Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J Virol 82, 12416–12421.[CrossRef] [Google Scholar]
  9. Blok, J., Mackenzie, A., Guy, P. & Gibbs, A.(1987). Nucleotide sequence comparisons of turnip yellow mosaic isolates from Australia and Europe. Arch Virol 97, 283–295.[CrossRef] [Google Scholar]
  10. Burroughs, W. J.(2005).Climate Change in Prehistory: the End of the Reign of Chaos. Cambridge: Cambridge University Press.
  11. Bush, R. M.(2004). Influenza as a model system for studying the cross-species transfer and evolution of the SARS coronavirus. Philos Trans R Soc Lond B Biol Sci 359, 1067–1073.[CrossRef] [Google Scholar]
  12. Bush, R. M., Fitch, W. M., Bender, C. A. & Cox, N. J.(1999). Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16, 1457–1465.[CrossRef] [Google Scholar]
  13. Bush, R. M., Smith, C. B., Cox, N. J. & Fitch, W. M.(2000). Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza A evolution. Proc Natl Acad Sci U S A 97, 6974–6980.[CrossRef] [Google Scholar]
  14. Campbell, J. H.(1993). A tilt at cladism or let's contemplate evolution instead of our belly buttons. Mem Ass Aust Palaeontol 15, 43–50. [Google Scholar]
  15. Cao, J. X., Ni, H., Wills, M. R., Campbell, G. A., Sil, B. K., Ryman, K. D., Kitchen, I. & Barrett, A. D.(1995). Passage of Japanese encephalitis virus in HeLa cells results in attenuation of virulence in mice. J Gen Virol 76, 2757–2764.[CrossRef] [Google Scholar]
  16. Carrasco, P., de la Iglesia, F. & Elena, S. F.(2007). The distribution of fitness and virulence effects caused by single nucleotide substitutions in tobacco etch virus. J Virol 81, 12979–12984.[CrossRef] [Google Scholar]
  17. Chiu, D. K. & Kolodziejczak, T.(1991). Inferring consensus structure from nucleic acid sequences. Comput Appl Biosci 7, 347–352. [Google Scholar]
  18. Clarkson, J. J., Knapp, S., García, V. F., Olmstead, R. G., Leitch, A. R. & Chase, M. W.(2004). Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33, 75–90.[CrossRef] [Google Scholar]
  19. Clarkson, J. J., Lim, K. Y., Kovarik, A., Chase, M. W., Knapp, S. & Leitch, A. R.(2005). Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168, 241–252.[CrossRef] [Google Scholar]
  20. Crosby, A. W.(2004).Ecological Imperialism: the Biological Expansion of Europe, 900–1900. Cambridge: Cambridge University Press.
  21. Debruyne, R. & Poinar, H. N.(2009). Time dependency of molecular rates in ancient DNA data sets, a sampling artifact? Syst Biol 58, 348–360.[CrossRef] [Google Scholar]
  22. Domingo, E. & Holland, J. J.(1997). RNA virus mutations and fitness for survival. Annu Rev Microbiol 51, 151–178.[CrossRef] [Google Scholar]
  23. Dorman, K. S.(2007). Identifying dramatic selection shifts in phylogenetic trees. BMC Evol Biol 7, S10 [Google Scholar]
  24. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F.(1998). Rates of spontaneous mutation. Genetics 148, 1667–1686. [Google Scholar]
  25. Drummond, A. J., Pybus, O. G., Rambaut, A., Forsberg, R. & Rodrigo, A. G.(2003). Measurably evolving populations. Trends Ecol Evol 18, 481–488.[CrossRef] [Google Scholar]
  26. Duffy, S. & Holmes, E. C.(2008). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 82, 957–965.[CrossRef] [Google Scholar]
  27. Duffy, S. & Holmes, E. C.(2009). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol 90, 1539–1547.[CrossRef] [Google Scholar]
  28. Duffy, S., Shackelton, L. A. & Holmes, E. C.(2008). Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9, 267–276. [Google Scholar]
  29. Eldredge, N. & Gould, S. J.(1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology, pp. 82–115. Edited by T. J. M. Schopf. San Fransisco: Freeman Cooper.
  30. Fargette, D., Pinel-Galzi, A., Sérémé, D., Lacombe, S., Hébrard, H., Traoré, O. & Konaté, G.(2008a). Diversification of rice yellow mottle virus and related viruses spans the history of agriculture from the Neolithic to the present. PLoS Pathog 4, e1000125[CrossRef] [Google Scholar]
  31. Fargette, D., Pinel, A., Rakotomalala, M., Sangu, E., Traoré, O., Sérémé, D., Sorho, F., Issaka, S., Hébrard, E. & other authors(2008b). Rice yellow mottle virus, an RNA plant virus, evolves as rapidly as most RNA animal viruses. J Virol 82, 3584–3589.[CrossRef] [Google Scholar]
  32. Fourment, M. & Gibbs, M. J.(2006).patristic: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol 6, 1[CrossRef] [Google Scholar]
  33. Fourment, M., Gibbs, A. J. & Gibbs, M. J.(2008).sweblast: a sliding window web-based blast tool for recombinant analysis. J Virol Methods 152, 98–101.[CrossRef] [Google Scholar]
  34. Fraile, A., Malpica, J. M., Aranda, M. A., Rodríguez-Cerezo, E. & García-Arenal, F.(1996). Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223, 148–155.[CrossRef] [Google Scholar]
  35. Fraile, A., Escriu, F., Aranda, M. A., Malpica, J. M., Gibbs, A. J. & García-Arenal, F.(1997). A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71, 8316–8320. [Google Scholar]
  36. French, R. & Stenger, D. C.(2003). Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41, 199–214.[CrossRef] [Google Scholar]
  37. García-Arenal, F., Fraile, A. & Malpica, J. M.(2001). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39, 157–186.[CrossRef] [Google Scholar]
  38. García-Arenal, F., Fraile, A. & Malpica, J. M.(2003). Variation and evolution of plant virus populations. Int Microbiol 6, 225–232.[CrossRef] [Google Scholar]
  39. Ge, L., Zhang, J., Zhou, X. & Li, H.(2007). Genetic structure and population variability of tomato yellow leaf curl China virus. J Virol 81, 5902–5907.[CrossRef] [Google Scholar]
  40. Gibbs, A. J.(1980). How ancient are the tobamoviruses? Intervirology 14, 101–108.[CrossRef] [Google Scholar]
  41. Gibbs, A. J., Blok, J., Coates, D. J., Guy, P. L., Mackenzie, A. & Pigram, N.(1986). Turnip yellow mosaic virus in an endemic Australian alpine Cardamine. In Flora and Fauna of Alpine Australasia; Ages and Origins, pp. 289–300. Edited by B. A. Barlow. Collingwood, Australia: CSIRO.
  42. Gibbs, A., Blok, J., Guy, P., Keese, P., Mackenzie, A. & Meek, D.(1989). Turnip yellow mosaic virus – a significant migrant to the Australian Alps. In The Scientific Significance of the Australian Alps, pp. 385–386. Edited by R. Good. Canberra: Australian Academy of Science.
  43. Gibbs, M. J., Wayper, P., Fourment, M. L., Wood, J. T., Ohshima, K., Armstrong, J. S. & Gibbs, A. J.(2007). The variable codons of H3 influenza A virus haemagglutinin genes. Arch Virol 152, 11–24.[CrossRef] [Google Scholar]
  44. Gibbs, A. J., Gibbs, M. J., Ohshima, K. & García-Arenal, F.(2008a). More plant virus evolution; past present and future. In Origin and Evolution of Viruses, 2nd edn, pp. 229–250. Edited by E. Domingo, C. R. Parrish & J. J. Holland. London: Academic Press.
  45. Gibbs, A. J., Mackenzie, A. M., Wei, K.-J. & Gibbs, M. J.(2008b). The potyviruses of Australia. Arch Virol 153, 1411–1420.[CrossRef] [Google Scholar]
  46. Gibbs, A. J., Ohshima, K., Phillips, M. J. & Gibbs, M. J.(2008c). The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS One 3, e2523[CrossRef] [Google Scholar]
  47. Gibbs, A. J., Trueman, J. W. H. & Gibbs, M. J.(2008d). The bean common mosaic virus lineage of potyviruses: where did it arise and when? Arch Virol 153, 2177–2188.[CrossRef] [Google Scholar]
  48. Gifford, R. J., Katzourakis, A., Tristem, M., Pybus, O. G., Winters, M. & Shafer, R. W.(2008). A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A 105, 20362–20367.[CrossRef] [Google Scholar]
  49. Gilbert, C., Maxfield, D. G., Goodman, S. M. & Feschotte, C.(2009). Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genetics 5, e1000425[CrossRef] [Google Scholar]
  50. González-Jara, P., Fraile, A., Canto, T. & García-Arenal, F.(2009). The multiplicity of infection of a plant virus varies during colonisation of its eukaryotic host. J Virol 83, 7487–7494.[CrossRef] [Google Scholar]
  51. Graff, J., Kasang, C., Normann, A., Pfisterer-Hunt, M., Feinstone, S. M. & Flehmig, B.(1994). Mutational events in consecutive passages of hepatitis A virus strain GBM during cell culture adaptation. Virology 204, 60–68.[CrossRef] [Google Scholar]
  52. Guindon, S. & Gascuel, O.(2003). PhyML – a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  53. Gutierrez, C.(1999). Geminivirus DNA replication. Cell Mol Life Sci 56, 313–329.[CrossRef] [Google Scholar]
  54. Guy, P. & Gibbs, A. J.(1981). A tymovirus of Cardamine sp. from alpine Australia. Australas Plant Pathol 10, 12–13.[CrossRef] [Google Scholar]
  55. Hanada, K., Suzuki, Y. & Gojobori, T.(2004). A large variation in the rates of synonymous substitution for RNA viruses and its relationships to a diversity of viral infection and transmission modes. Mol Biol Evol 21, 1074–1080.[CrossRef] [Google Scholar]
  56. Harkins, G. W., Delport, W., Duffy, S., Wood, N., Monjane, A. L., Owor, B. E., Donaldson, L., Saumtally, S., Triton, G. & other authors(2009). Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol J 6, 104[CrossRef] [Google Scholar]
  57. Harlan, J. R.(1976). Diseases as a factor in plant evolution. Annu Rev Phytopathol 14, 31–51.[CrossRef] [Google Scholar]
  58. Hartl, D. & Dykhuizen, D.(1979). A selectively driven molecular clock. Nature 281, 230–231.[CrossRef] [Google Scholar]
  59. Hayden, C. M., Mackenzie, A. M. & Gibbs, A. J.(1998). Virion protein sequence variation among Australian isolates of turnip yellow mosaic virus. Arch Virol 143, 191–201.[CrossRef] [Google Scholar]
  60. Ho, S. Y. W., Phillips, M. J., Cooper, A. & Drummond, A. J.(2005). Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22, 1561–1568.[CrossRef] [Google Scholar]
  61. Ho, S. Y. W., Shapiro, B., Phillips, M. J., Cooper, A. & Drummond, A. J.(2007). Evidence for time dependency of molecular rate estimates. Syst Biol 56, 515–522.[CrossRef] [Google Scholar]
  62. Holmes, F. O.(1951). Indications of a New World origin of tobacco mosaic virus. Phytopathology 41, 341–349. [Google Scholar]
  63. Holmes, E. C.(2009).The Evolution and Emergence of RNA viruses. Oxford: Oxford University Press.
  64. Hughes, A. L.(2009). Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology 393, 127–134.[CrossRef] [Google Scholar]
  65. Itoh, M., Isegawa, Y., Hotta, H. & Homma, M.(1997). Isolation of an avirulent mutant of Sendai virus with two amino acid mutations from a highly virulent field strain through adaptation to LLC-MK2 cells. J Gen Virol 78, 3207–3215. [Google Scholar]
  66. Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C.(2002). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54, 156–165.[CrossRef] [Google Scholar]
  67. Jiu, M., Zhou, X.-P., Tong, L., Xu, J., Yang, X., Wan, F.-H. & Liu, S.-S.(2007). Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS One 2, e182[CrossRef] [Google Scholar]
  68. Jones, R. A. C.(2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141, 113–130.[CrossRef] [Google Scholar]
  69. Jones, D. R. & Baker, R. H. A.(2007). Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol 56, 891–910.[CrossRef] [Google Scholar]
  70. Kang, H. J., Bennett, S. N., Sumibcay, L., Arai, S., Hope, A. G., Mocz, G., Song, J.-W., Cook, J. A. & Yanagihara, R.(2009). Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 4, e6149[CrossRef] [Google Scholar]
  71. Katzourakis, A., Gifford, R. J., Tristem, M., Thomas, M., Gilbert, P. & Pybus, O. G.(2009). Macroevolution of complex retroviruses. Science 325, 1512[CrossRef] [Google Scholar]
  72. Kirino, N., Inoue, K., Tanina, K., Yamazaki, Y. & Ohki, S. T.(2008).Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. J Gen Plant Pathol 74, 331–334.[CrossRef] [Google Scholar]
  73. Koonin, E. V. & Dolja, V. V.(2006). Evolution of complexity in the viral world: the dawn of a new vision. Virus Res 117, 1–4.[CrossRef] [Google Scholar]
  74. Koonin, E. V., Wolf, Y. I., Nagasaki, K. & Dolja, V. V.(2008). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6, 925–939.[CrossRef] [Google Scholar]
  75. Lopez, P., Casane, D. & Philippe, H.(2002). Heterotachy, an important process of protein evolution. Mol Biol Evol 19, 1–7.[CrossRef] [Google Scholar]
  76. Luz, H. & Vingron, M.(2006). Family specific rates of protein evolution. Bioinformatics 22, 1166–1171.[CrossRef] [Google Scholar]
  77. Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A.(2007). Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J Ecol 95, 1153–1166.[CrossRef] [Google Scholar]
  78. Malpica, J. M., Fraile, A., Moreno, I., Obies, C. I., Drake, J. W. & García-Arenal, F.(2002). The rate and character of spontaneous mutation in an RNA virus. Genetics 162, 1505–1511. [Google Scholar]
  79. Martin, D. P., Williamson, C. & Posada, D.(2005).rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef] [Google Scholar]
  80. McKinney, H. H.(1929). Mosaic diseases in the Canary Islands, West Africa, and Gibraltar. J Agric Res 39, 557–578. [Google Scholar]
  81. McKinney, H. H.(1937).Mosaic Diseases of Wheat and Related Cereals, pp. 1–23. US Department of Agriculture Circular No. 442.
  82. Moury, B., Fabre, F. & Senoussi, R.(2007). Estimation of the number of virus particles transmitted by an insect vector. Proc Natl Acad Sci U S A 104, 17891–17896.[CrossRef] [Google Scholar]
  83. Murad, L., Bielawski, J. P., Matyasek, R., Kovarık, A., Nichols, R. A., Leitch, A. R. & Lichtenstein, C. P.(2004). The origin and evolution of geminivirus-related DNA sequences in Nicotiana. Heredity 92, 352–358.[CrossRef] [Google Scholar]
  84. Murphy, D. J.(2007).People, Plants and Genes: the Story of Crops and Humanity. Oxford: Oxford University Press.
  85. Muthukumar, V., Melcher, U., Pierce, M., Wiley, G. B., Roe, B. A., Palmer, M. W., Thapa, V., Ali, A. & Ding, T.(2009). Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res 141, 169–173.[CrossRef] [Google Scholar]
  86. Pagel, M. & Meade, A.(2008). Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo. Philos Trans R Soc Lond B Biol Sci 363, 3955–3964.[CrossRef] [Google Scholar]
  87. Pybus, O. G., Rambaut, A., Belshaw, R., Freckleton, R. P., Drummond, A. J. & Holmes, E. C.(2007). Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol 24, 845–852. [Google Scholar]
  88. Ramsden, C., Melo, F. L., Figueiredo, L. M., Holmes, E. C. & Zanotto, P. M.(2008). High rates of molecular evolution in hantaviruses. Mol Biol Evol 25, 1488–1492.[CrossRef] [Google Scholar]
  89. Ramsden, C., Holmes, E. C. & Charleston, M. A.(2009). Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 26, 143–153. [Google Scholar]
  90. Raney, J. L., Delongchamp, R. R. & Valentine, C. R.(2004). Spontaneous mutant frequency and mutation spectrum for gene A of ΦX174 grown in E. coli. Environ Mol Mutagen 44, 119–127.[CrossRef] [Google Scholar]
  91. Rodriguez-Cerezo, E. & García-Arenal, F.(1989). Genetic heterogeneity of the RNA genome population in the plant virus U5–TMV. Virology 170, 418–423.[CrossRef] [Google Scholar]
  92. Ruddiman, W. F.(2003). The anthropogenic greenhouse era began thousands of years ago. Clim Change 61, 261–293.[CrossRef] [Google Scholar]
  93. Rybicki, E. P.(1994). A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol 139, 49–77.[CrossRef] [Google Scholar]
  94. Sacristán, S., Malpica, J. M., Fraile, A. & García-Arenal, F.(2003). Estimation of population bottlenecks during systemic movement of Tobacco mosaic virus in tobacco plants. J Virol 77, 9906–9911.[CrossRef] [Google Scholar]
  95. Salaman, R. N.(1933). Protective inoculation against a plant virus. Nature 131, 468 [Google Scholar]
  96. Sanjuan, R., Moya, A. & Elena, S. F.(2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci U S A 101, 15376–15379.[CrossRef] [Google Scholar]
  97. Sanjuán, R., Agudelo-Romero, P. & Elena, S. F.(2009). Upper-limit mutation rate estimation for a plant RNA virus. Biol Lett 5, 394–396.[CrossRef] [Google Scholar]
  98. Sarich, V. M. & Wilson, A. C.(1967). Rates of albumin evolution in primates. Proc Natl Acad Sci U S A 58, 142–148.[CrossRef] [Google Scholar]
  99. Sawyer, L. S., Wrin, M. T., Crawford-Miksza, L., Potts, B., Wu, Y., Weber, P. A., Alfonso, R. D. & Hanson, C. V.(1994). Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated. J Virol 68, 1342–1349. [Google Scholar]
  100. Schardl, C. L., Craven, D., Speakman, S., Stromberg, A., Lindstrom, A. & Yoshida, R.(2008). A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst Biol 57, 483–498.[CrossRef] [Google Scholar]
  101. Simmons, H. E., Holmes, E. C. & Stephenson, A. G.(2008). Rapid evolutionary dynamics of zucchini yellow mosaic virus. J Gen Virol 89, 1081–1085.[CrossRef] [Google Scholar]
  102. Smith, D. J., Lapedes, A. S., de Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D. & Fouchier, R. A.(2004). Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376.[CrossRef] [Google Scholar]
  103. Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S.(2008). Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133, 3–25.[CrossRef] [Google Scholar]
  104. Stenger, D. C., Seifers, D. L. & French, R.(2002). Patterns of polymorphism in wheat streak mosaic virus: sequence space explored by a clade of closely related viral genotypes rivals that between the most divergent strains. Virology 302, 58–70.[CrossRef] [Google Scholar]
  105. Stubbs, G.(1999). Tobacco mosaic virus particle structure and the initiation of disassembly. Philos Trans R Soc Lond B Biol Sci 354, 551–557.[CrossRef] [Google Scholar]
  106. Stukenbrock, E. H. & McDonald, B. A.(2008). The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46, 75–100.[CrossRef] [Google Scholar]
  107. Sweeney, M. & McCouch, S.(2007). The complex history of the domestication of rice. Ann Bot 100, 951–957.[CrossRef] [Google Scholar]
  108. Thorne, J. L. & Kishino, H.(2005).Estimation of Divergence Times from Molecular Sequence Data. Vienna: Springer.
  109. Thung, T. H.(1931). Smetstof en plantencel bij enkele virusziekten van de tabaksplant. Eur J Plant Pathol 45, 247–259 (in Dutch). [Google Scholar]
  110. Tripathi, S., Suzuki, J. Y., Ferreira, S. & Gonsalves, D.(2008). Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9, 269–280 (in Dutch).[CrossRef] [Google Scholar]
  111. van der Walt, E., Martin, D. P., Varsani, A., Polston, J. E. & Rybicki, E. P.(2008). Experimental observations of rapid maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 5, 104[CrossRef] [Google Scholar]
  112. Vavilov, N. I.(1940). The theory of origins of cultivated plants after Darwin. In Origin and Geography of Cultivated Plants, p. 498. Cambridge: Cambridge University Press.
  113. Webster, C. G., Coutts, B. A., Jones, R. A. C., Jones, M. G. K. & Wylie, S. J.(2007). Virus impact at the ancient ecosystem-recent agroecosystem interface: studies on three legume-infecting potyviruses in the Southwest Australian Floristic Region. Plant Pathol 56, 729–742.[CrossRef] [Google Scholar]
  114. Wertheim, J. O. & Worobey, M.(2009). Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLoS Comput Biol 5, e1000377[CrossRef] [Google Scholar]
  115. Wilson, A. C., Carlson, S. S. & White, T. J.(1977). Biochemical evolution. Annu Rev Biochem 46, 573–639.[CrossRef] [Google Scholar]
  116. Wolf, M. Y., Wolf, Y. I. & Koonin, E. V.(2008). Comparable contributions of structural–functional constraints and expression level to the rate of protein sequence evolution. Biol Direct 3, 40[CrossRef] [Google Scholar]
  117. Wolfe, N. D., Dunavan, C. P. & Diamond, J.(2007). Origins of major human infectious diseases. Nature 447, 279–283.[CrossRef] [Google Scholar]
  118. Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W. & Melcher, U.(2006). Plant virus biodiversity and ecology. PLoS Biol 4, e80[CrossRef] [Google Scholar]
  119. Wu, B., Melcher, U., Guo, X., Wang, X., Fan, L. & Zhou, G.(2008). Assessment of codivergence of Mastreviruses with their plant hosts. BMC Evol Biol 8, 335[CrossRef] [Google Scholar]
  120. Zheng, L., Wayper, P. J., Gibbs, A. J., Fourment, M., Rodoni, B. C. & Gibbs, M. J.(2008). Accumulating variation at conserved sites in potyvirus genomes is driven by species discovery and affects degenerate primer design. PLoS One 3, e1586[CrossRef] [Google Scholar]
  121. Zuckerkandl, E. & Pauling, L. B.(1962). Molecular disease, evolution, and genetic heterogeneity. In Horizons in Biochemistry, pp. 189–225. Edited by M. Kasha & B. Pullman. New York: Academic Press.
  122. Zuckerkandl, E. & Pauling, L. B.(1965). Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins, pp. 97–166. Edited by V. Bryson & H. J. Vogel. New York: Academic Press.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015925-0
Loading
/content/journal/jgv/10.1099/vir.0.015925-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error