1887

Abstract

The susceptibility of chickens to both 1918 and 2009 H1N1 influenza virus was evaluated. The intravenous pathogenicity index of 1918 and 2009 H1N1 viruses in chickens was 0. Chickens did not develop clinical signs following experimental inoculation simulating natural infection. No gross pathological changes were observed in any tissues of chickens between 2 and 18 days post-infection (p.i.) and viral RNA was not detected by real-time RT-PCR in mucosal secretions or tissues. Seroconversion was not detected in any of the chickens following inoculation with H1N1 2009 virus, whereas half the chickens developed influenza-specific antibodies at 28 days p.i. with 1918 influenza, suggesting limited infection. Viral RNA was detected by real-time RT-PCR in mallard ducks following inoculation with 1918 influenza virus at 3 days p.i. in cloacal swabs, but not in tissues, and all ducks seroconverted by 28 days p.i. Both 1918 and 2009 H1N1 influenza viruses behave as LPAI in gallinaceous poultry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016246-0
2010-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/339.html?itemId=/content/journal/jgv/10.1099/vir.0.016246-0&mimeType=html&fmt=ahah

References

  1. Gambaryan, A., Webster, R. & Matrosovich, M.(2002). Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 147, 1197–1208.[CrossRef] [Google Scholar]
  2. Glaser, L., Stevens, J., Zamarin, D., Wilson, I. A., García-Sastre, A., Tumpey, T. M., Basler, C. F., Taubenberger, J. K. & Palese, P.(2005). A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79, 11533–11536.[CrossRef] [Google Scholar]
  3. Gubareva, L. V., McCullers, J. A., Bethell, R. C. & Webster, R. G.(1998). Characterization of influenza A/Hong Kong/156/97 (H5N1) virus in a mouse model and protective effect of zanamavir on H5N1 infection in mice. J Infect Dis 178, 1592–1596.[CrossRef] [Google Scholar]
  4. Johnson, N. P. & Mueller, J.(2002). Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 76, 105–115.[CrossRef] [Google Scholar]
  5. Kandun, I. N., Tresnaningsih, E., Purba, W. H., Lee, V., Samaan, G., Harun, S., Soni, E., Septiawati, C., Setiawati, T. & other authors(2008). Factors associated with case fatality of human H5N1 virus infections in Indonesia: a case series. Lancet 372, 744–749.[CrossRef] [Google Scholar]
  6. Kobasa, D., Jones, S. M., Shinya, K., Kash, J. C., Copps, J., Ebihara, H., Hatta, Y., Kim, J. H., Halfmann, P. & other authors(2007). Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323.[CrossRef] [Google Scholar]
  7. Lange, E., Kalthoff, D., Blohm, U., Teifke, J. P., Breithaupt, A., Maresch, C., Starick, E., Fereidouni, S., Hoffmann, B. & other authors(2009). Pathogenesis and transmission of the novel swine origin influenza virus A/H1N1 after experimental infection of pigs. J Gen Virol 90, 2119–2123.[CrossRef] [Google Scholar]
  8. Liu, M., He, S., Walker, D., Zhou, N., Perez, D. R., Mo, B., Li, F., Huang, X., Webster, R. G. & Webby, R. J.(2003). The influenza virus gene pool in a poultry market in South central china. Virology 305, 267–275.[CrossRef] [Google Scholar]
  9. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood, F. S., Jain, S., Finelli, L., Shaw, M. W., Lindstrom, S., Garten, R. J., Gubareva, L. V., Xu, X. & other authors(2009). Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360, 2605–2615.[CrossRef] [Google Scholar]
  10. OIE(2008).Avian influenza. Office International des Epizooties Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (mammals, birds and bees), pp. 465–481. OIE, Paris.
  11. Pasick, J., Berhane, Y., Embury-Hyatt, C., Copps, J., Kehler, H., Handel, K., Babiuk, S., Hooper-McGrevy, K., Li, Y. & other authors(2007). Susceptibility of Canada Geese (Branta canadensis) to highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 13, 1821–1827.[CrossRef] [Google Scholar]
  12. Qi, L., Kash, J. C., Dugan, V. G., Wang, R., Jin, G., Cunningham, R. E. & Taubenberger, J. K.(2009). Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis in mice. J Virol 83, 3754–3761.[CrossRef] [Google Scholar]
  13. Reid, A. H., Taubenberger, J. K. & Fanning, T. G.(2004). Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol 2, 909–914.[CrossRef] [Google Scholar]
  14. Rimmelzwaan, G. F., Kuiken, T., van Amerongen, G., Bestebroer, T. M., Fouchier, R. A. & Osterhaus, A. D.(2001). Pathogenesis of influenza A (H5N1) virus infection in a primate model. J Virol 75, 6687–6691.[CrossRef] [Google Scholar]
  15. Spackman, E., Senne, D. A., Myers, T. J., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. & Suarez, D. L.(2002). Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40, 3256–3260.[CrossRef] [Google Scholar]
  16. Suarez, D. L., Woolcock, P. R., Bermudez, A. J. & Senne, D. A.(2002). Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes. Avian Dis 46, 111–121.[CrossRef] [Google Scholar]
  17. Taubenberger, J. K., Reid, A. H., Lourens, R. M., Wang, R., Jin, G. & Fanning, T. G.(2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893.[CrossRef] [Google Scholar]
  18. Tran, T. H., Nguyen, T. L., Nguyen, T. D., Luong, T. S., Pham, P. M., Nguyen, V. C., Pham, T. S., Vo, C. D., Le, T. Q. & other authors(2004). Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350, 1179–1188.[CrossRef] [Google Scholar]
  19. Tumpey, T. M., García-Sastre, A., Taubenberger, J. K., Palese, P., Swayne, D. E. & Basler, C. F.(2004). Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci U S A 101, 3166–3171.[CrossRef] [Google Scholar]
  20. Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K. & other authors(2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80.[CrossRef] [Google Scholar]
  21. Tumpey, T. M., Maines, T. R., Van Hoeven, N., Glaser, L., Solórzano, A., Pappas, C., Cox, N. J., Swayne, D. E., Palese, P. & other authors(2007). A two-amino acid changes in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659.[CrossRef] [Google Scholar]
  22. Wan, H. & Perez, D. R.(2007). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81, 5181–5191.[CrossRef] [Google Scholar]
  23. Weingartl, H. M., Albrecht, R. A., Lager, K., Babiuk, S., Marszal, P., Neufeld, J., Embury-Hyatt, C., Lekcharoensuk, P., Tumpey, T. M. & other authors(2009). Experimental infection of pigs with the human 1918 pandemic influenza virus. J Virol 83, 4287–4296.[CrossRef] [Google Scholar]
  24. Zhou, E. M., Chan, M., Heckert, R. A., Riva, J. & Cantin, M. F.(1998). Evaluation of a competitive ELISA for detection of antibodies against avian influenza virus nucleoprotein. Avian Dis 42, 517–522.[CrossRef] [Google Scholar]
  25. Zitzow, L. A., Rowe, T., Morken, T., Shieh, W. J., Zaki, S. & Katz, J. M.(2002). Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J Virol 76, 4420–4429.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016246-0
Loading
/content/journal/jgv/10.1099/vir.0.016246-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error