1887

Abstract

Human papillomavirus type 16 (HPV-16) is the cause of cervical cancer. The HPV genome encodes three transforming proteins, E5, E6 and E7. E6 and E7 are the main transforming proteins of HPV, while the role of E5 is still poorly understood. Using three dimensional organotypic raft cultures we show that HaCaT human keratinocytes expressing HPV-16 E5 form a very perturbed epithelium, with simultaneous hyperkeratinization of some cells and defective differentiation of other cells. The basal layer is disturbed and many cells invade the collagen matrix. Many cells among the differentiated layers show characteristics of basal cells: progression through the cell cycle, expression of cytokeratin 14, lack of cytokeratin 1 and production of matrix metalloproteases (MMP). Using deletion mutants which encompass the three hydrophobic domains of E5, we have assigned the ability to promote invasion of the matrix to the first hydrophobic domain, and the capacity to induce MMP9 to the C-terminal four amino acids. We also show that invasion and production of MMP9 can be dissociated, as mutants that are still capable of invasion do not produce MMP9 and vice versa.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016295-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/521.html?itemId=/content/journal/jgv/10.1099/vir.0.016295-0&mimeType=html&fmt=ahah

References

  1. Aasen, T., Hodgins, M. B., Edward, M. & Graham, S. V.(2003). The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene 22, 7969–7980.[CrossRef] [Google Scholar]
  2. Adam, J. L., Briggs, M. W. & McCance, D. J.(2000). A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology 272, 315–325.[CrossRef] [Google Scholar]
  3. Akgül, B., Pfefferle, R., Marcuzzi, G. P., Zigrino, P., Krieg, T., Pfister, H. & Mauch, C.(2006). Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol 15, 35–42.[CrossRef] [Google Scholar]
  4. Alazawi, W., Pett, M., Arch, B., Scott, L., Freeman, T., Stanley, M. A. & Coleman, N.(2002). Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res 62, 6959–6965. [Google Scholar]
  5. Araibi, L. H.(2006).Down-regulation of MHC class I by papillomavirus E5 proteins. PhD thesis, University of Glasgow.
  6. Ashrafi, G. H., Pitts, J. D., Faccini, A., McLean, P., O'Brien, V., Finbow, M. E. & Campo, M. S.(2000). Binding of bovine papillomavirus type 4 E5 to ductin (16K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. J Gen Virol 81, 689–694. [Google Scholar]
  7. Ashrafi, G. H., Haghshenas, M. R., Marchetti, B., O'Brien, P. M. & Campo, M. S.(2005). The E5 protein of human papillomavirus type 16 selectively down-regulates surface HLA class. Int J Cancer 113, 276–283.[CrossRef] [Google Scholar]
  8. Ashrafi, G. H. H. M., Marchetti, B. & Campo, M. S.(2006). E5 protein of human papillomavirus 16 down-regulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 119, 2105–2112.[CrossRef] [Google Scholar]
  9. Auvinen, E., Alonso, A. & Auvinen, P.(2004). Human papillomavirus type 16 E5 protein colocalizes with the antiapoptotic Bcl-2 protein. Arch Virol 149, 1745–1759. [Google Scholar]
  10. Behren, A., Simon, C., Schwab, R. M., Loetzsch, E., Brodbeck, S., Huber, E., Stubenrauch, F., Zenner, H. P. & Iftner, T.(2005). Papillomavirus E2 protein induces expression of the matrix metalloproteinase-9 via the extracellular signal-regulated kinase/activator protein-1 signaling pathway. Cancer Res 65, 11613–11621.[CrossRef] [Google Scholar]
  11. Björklund, M. & Koivunen, E.(2005). Gelatinase-mediated migration and invasion of cancer cells. Biochem Biophys Acta 1755, 37–69. [Google Scholar]
  12. Borzacchiello, G., Mogavero, S., De Vita, G., Roperto, S., Della Salda, L. & Roperto, F.(2009). Activated platelet-derived growth factor beta receptor expression, PI3K–AKT pathway molecular analysis, and transforming signals in equine sarcoids. Vet Pathol 46, 589–597.[CrossRef] [Google Scholar]
  13. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. & Fusenig, N. E.(1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106, 761–771.[CrossRef] [Google Scholar]
  14. Cavuslu, S., Starkey, W. G., Kell, B., Best, J. M. & Cason, J.(1996). Detection of human papillomavirus type 16 in microtitre plate based immuno-enzymatic assays: use to determine E5 gene expression in cervical carcinomas. Clin Diagn Virol 5, 215–218.[CrossRef] [Google Scholar]
  15. Chang, J. L., Tsao, Y. P., Liu, D. W., Huang, S. J., Lee, W. H. & Chen, S. L.(2001). The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci 8, 206–213.[CrossRef] [Google Scholar]
  16. Chen, S. L., Lin, Y. K., Li, L. Y., Tsao, Y. P., Lo, H. Y., Wang, W. B. & Tsai, T. C.(1996). E5 proteins of human papillomavirus types 11 and 16 transactivate the c-fos promoter through the NF1 binding element. J Virol 70, 8558–8563. [Google Scholar]
  17. Chow, L. T. & Broker, T. R.(1997).In vitro experimental systems for HPV: epithelial raft cultures for investigations of viral reproduction and pathogenesis and for genetic analyses of viral proteins and regulatory sequences. Clin Dermatol 15, 217–227.[CrossRef] [Google Scholar]
  18. Clark, I. M., Swingler, T. E., Sampieri, C. L. & Edwards, D. R.(2008). The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40, 1362–1378.[CrossRef] [Google Scholar]
  19. Conrad, M., Goldstein, D., Andresson, T. & Schlegel, R.(1994). The E5 protein of HPV-6, but not HPV-16, associates efficiently with cellular growth factor receptors. Virology 200, 796–800.[CrossRef] [Google Scholar]
  20. Cortese, M. S., Ashrafi, G. H. & Campo, M. S.(2009). All four di-leucine motifs in the first hydrophobic domain of the E5 oncoprotein of human papillomavirus type 16 are essential for surface MHC class I down-regulation activity and E5 endomembrane localisation. Int J Cancer Oct 28 [Epub ahead of print] [Google Scholar]
  21. Crusius, K., Auvinen, E. & Alonso, A.(1997). Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15, 1437–1444.[CrossRef] [Google Scholar]
  22. Crusius, K., Auvinen, E., Steuer, B., Gaissert, H. & Alonzo, A.(1998). The human papillomavirus type 16 E5 protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res 241, 78–83. [Google Scholar]
  23. Deryugina, E. I. & Quigley, J. P.(2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews 25, 9–34.[CrossRef] [Google Scholar]
  24. Fehrmann, F., Klumpp, D. J. & Laimins, L. A.(2003). Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 77, 2819–2831.[CrossRef] [Google Scholar]
  25. Genther, S. M., Sterling, S., Duensing, S., Munger, K., Sattler, C. & Lambert, P. F.(2003). Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 77, 2832–2842.[CrossRef] [Google Scholar]
  26. Genther Williams, S. M., Disbrow, G. L., Schlegel, R., Lee, D., Threadgill, D. W. & Lambert, P. F.(2005). Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 65, 6534–6542.[CrossRef] [Google Scholar]
  27. Gerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U. & Stein, H.(1984). Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133, 1710–1715. [Google Scholar]
  28. Hu, L., Plafker, K., Vorozhko, V., Zuna, R. E., Hanigan, M. H., Gorbsky, G. J., Plafker, S. M., Angeletti, P. C. & Ceresa, B. P.(2009). Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion. Virology 384, 125–134.[CrossRef] [Google Scholar]
  29. Kabsch, K., Mossadegh, N., Kohl, A., Komposch, G., Schenkel, J., Alonso, A. & Tomakidi, P.(2004). The HPV-16 E5 protein inhibits TRAIL- and FasL-mediated apoptosis in human keratinocyte raft cultures. Intervirology 47, 48–56.[CrossRef] [Google Scholar]
  30. Kell, B., Jewers, R. J., Cason, J., Pakarian, F., Kaye, J. N. & Best, J. M.(1994). Detection of E5 oncoprotein in human papillomavirus type 16-positive cervical scrapes using antibodies raised to synthetic peptides. J Gen Virol 75, 2451–2456.[CrossRef] [Google Scholar]
  31. Kim, S.-H., Juhnn, Y.-S., Kang, S., Park, S.-W., Sung, M.-W., Bang, Y.-J. & Song, Y.-S.(2006). Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ERK1,2 and PI3K/Akt. Cell Mol Life Sci 63, 930–938.[CrossRef] [Google Scholar]
  32. Kim, S. H., Oh, J. M., No, J. H., Bang, Y. J., Juhnn, Y. S. & Song, Y. S.(2009). Involvement of NF-κB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein. Carcinogenesis 30, 753–757.[CrossRef] [Google Scholar]
  33. Krawczyk, E., Suprynowicz, F. A., Liu, X., Dai, Y., Hartmann, D. P., Hanover, J. & Schlegel, R.(2008). Koilocytosis: a cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. Am J Pathol 173, 682–688.[CrossRef] [Google Scholar]
  34. Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., Metcalf, R. A., Stampfer, M. R., Fusenig, N. & other authors(1993). p53 mutations in human immortalised cell lines. Carcinogenesis 14, 833–839.[CrossRef] [Google Scholar]
  35. Lewis, C., Baro, M. F., Marques, M., Grüner, M., Alonso, A. & Bravo, I. G.(2008). The first hydrophobic region of the HPV16 E5 protein determines protein cellular location and facilitates anchorage-independent growth. Virol J 5, 30–40.[CrossRef] [Google Scholar]
  36. Maufort, J. P., Genther Williams, S. M., Pitot, H. C. & Lambert, P. F.(2007). Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 67, 6106–6112.[CrossRef] [Google Scholar]
  37. Nakagawa, H., Inomoto, T. & Rustgi, A. K.(1997). A CACCC box-like cis regulatory element of the Epstein–Barr virus ED-L2 promoter interacts with a novel transcriptional factor in tissue-specific squamous epithelia. J Biol Chem 272, 16688–16699.[CrossRef] [Google Scholar]
  38. Narayan, G., Bourdon, V., Chaganti, S., Arias-Pulido, H., Nandula, S. V., Rao, P. H., Gissmann, L., Dürst, M., Schneider, A. & other authors(2007). Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46, 373–384.[CrossRef] [Google Scholar]
  39. Oelze, I., Kartenbeck, J., Crusius, K. & Alonso, A.(1995). Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. J Virol 69, 4489–4494. [Google Scholar]
  40. Pilcher, B. K., Wang, M., Qin, X. J., Parks, W. C., Senior, R. M. & Welgus, H. G.(1999). Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann N Y Acad Sci 878, 12–24.[CrossRef] [Google Scholar]
  41. Regan, J. A. & Laimins, L. A.(2008). Bap31 is a novel target of the human papillomavirus E5 protein. J Virol 82, 10042–10051.[CrossRef] [Google Scholar]
  42. Rodriguez, M. I., Finbow, M. E. & Alonso, A.(2000). Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene 19, 3727–3732.[CrossRef] [Google Scholar]
  43. Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R. & Grinstein, S.(2000). Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol 148, 305–315.[CrossRef] [Google Scholar]
  44. Stanley, M. A., Browne, H. M., Appleby, M. & Minson, A. C.(1989). Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43, 672–676.[CrossRef] [Google Scholar]
  45. Stoppler, M. C., Straight, S. W., Tsao, G., Schlegel, R. & McCance, D. J.(1996). The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223, 251–254.[CrossRef] [Google Scholar]
  46. Straight, S. W., Hinkle, P. M., Jewers, R. J. & McCance, D. J.(1993). The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67, 4521–4532. [Google Scholar]
  47. Straight, S. W., Herman, B. & McCance, D. J.(1995). The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 69, 3185–3192. [Google Scholar]
  48. Suprynowicz, F. A., Campo, M. S. & Schlegel, R.(2006). Biological activities of papillomavirus E5 proteins. In Papillomavirus Research: From Natural History To Vaccines and Beyond, pp. 97–113. Edited by M. S. Campo. Norfolk, UK: Caister Academic Press.
  49. Tomakidi, P., Cheng, H., Kohl, A., Komposch, G. & Alonso, A.(2000a). Connexin 43 expression is downregulated in raft cultures of human keratinocytes expressing the human papillomavirus type 16 E5 protein. Cell Tissue Res 301, 323–327.[CrossRef] [Google Scholar]
  50. Tomakidi, P., Cheng, H., Kohl, A., Komposch, G. & Alonso, A.(2000b). Modulation of the epidermal growth factor receptor by the human papillomavirus type 16 E5 protein in raft cultures of human keratinocytes. Eur J Cell Biol 79, 407–412.[CrossRef] [Google Scholar]
  51. Tsao, Y. P., Li, L. Y., Tsai, T. C. & Chen, S. L.(1996). Human papillomavirus type 11 and 16 E5 represses p21(WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes. J Virol 70, 7535–7539. [Google Scholar]
  52. Wakisaka, N. & Pajano, J. S.(2003). Epstein–Barr virus induces invasion and metastasis factors. Anticancer Res 23, 2133–2138. [Google Scholar]
  53. Yoshizaki, T., Sato, H., Furukawa, M. & Pagano, J. S.(1998). The expression of matrix metalloproteinase 9 is enhanced by Epstein–Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A 95, 3621–3626.[CrossRef] [Google Scholar]
  54. Yuan, Z. Q., Nicolson, L., Marchetti, B., Gault, E. A., Campo, M. S. & Nasir, L.(2008). Transcriptional changes induced by bovine papillomavirus type 1 in equine fibroblasts. J Virol 82, 6481–6491.[CrossRef] [Google Scholar]
  55. Zhang, B., Li, P., Wang, E., Brahmi, Z., Dunn, K. W., Blum, J. S. & Roman, A.(2003). The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology 310, 100–108.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016295-0
Loading
/content/journal/jgv/10.1099/vir.0.016295-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 521 - 530

HPV-16 E5 mRNA in HaCaT cells

Differentiation of HaCaT keratinocytes resembles differentiation of primary human foreskin keratinocytes

Expression of HPV-16 E5 in raft cultures of HaCaT keratinocytes and in CIN [Single PDF file](153 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error