1887

Abstract

Recent studies have shown that long-term persistence of human cytomegalovirus (HCMV) in mononuclear cells of myeloid lineage is dependent on the open reading frame, which promotes latent infection. Although T-cell recognition of protein antigens from all stages of lytic HCMV infection is well established, it is not clear whether proteins expressed during latent HCMV infection can also be recognized. This study conducted an analysis of T-cell response towards proteins associated with HCMV latency. analysis of T cells from healthy virus carriers revealed a dominant CD8 T-cell response to the latency-associated pUL138 protein, which recognized a non-canonical 13 aa epitope in association with HLA-B*3501. These pUL138-specific T cells displayed a range of memory phenotypes that were in general less differentiated than that previously described in T cells specific for HCMV lytic antigens. Antigen-presentation assays revealed that endogenous pUL138 could be presented efficiently by HCMV-infected cells. However, T-cell recognition of pUL138 was dependent on newly synthesized protein, with little presentation from stable, long-lived protein. These data demonstrate that T cells targeting latency-associated protein products exist, although HCMV may limit the presentation of latent proteins, thereby restricting T-cell recognition of latently infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.020982-0
2010-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/2040.html?itemId=/content/journal/jgv/10.1099/vir.0.020982-0&mimeType=html&fmt=ahah

References

  1. Appay V., Dunbar P. R., Callan M., Klenerman P., Gillespie G. M., Papagno L., Ogg G. S., King A., Lechner F. other authors 2002; Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385
    [Google Scholar]
  2. Bego M., Maciejewski J., Khaiboullina S., Pari G., St Jeor S. 2005; Characterization of an antisense transcript spanning the UL81–82 locus of human cytomegalovirus. J Virol 79:11022–11034
    [Google Scholar]
  3. Boeckh M., Nichols W. G., Papanicolaou G., Rubin R., Wingard J. R., Zaia J. 2003; Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 9:543–558
    [Google Scholar]
  4. Bolovan-Fritts C. A., Mocarski E. S., Wiedeman J. A. 1999; Peripheral blood CD14+ cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood 93:394–398
    [Google Scholar]
  5. Broers A. E., van Der Holt R., van Esser J. W., Gratama J. W., Henzen-Logmans S., Kuenen-Boumeester V., Lowenberg B., Cornelissen J. J. 2000; Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood 95:2240–2245
    [Google Scholar]
  6. Cheung A. K., Abendroth A., Cunningham A. L., Slobedman B. 2006; Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 108:3691–3699
    [Google Scholar]
  7. Crough T., Khanna R. 2009; Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 22:76–98
    [Google Scholar]
  8. Elkington R., Walker S., Crough T., Menzies M., Tellam J., Bharadwaj M., Khanna R. 2003; Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol 77:5226–5240
    [Google Scholar]
  9. Gandhi M. K., Khanna R. 2004; Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 4:725–738
    [Google Scholar]
  10. Goodrum F. D., Jordan C. T., High K., Shenk T. 2002; Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A 99:16255–16260
    [Google Scholar]
  11. Goodrum F., Jordan C. T., Terhune S. S., High K., Shenk T. 2004; Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104:687–695
    [Google Scholar]
  12. Goodrum F., Reeves M., Sinclair J., High K., Shenk T. 2007; Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 110:937–945
    [Google Scholar]
  13. Hadrup S. R., Strindhall J., Kollgaard T., Seremet T., Johansson B., Pawelec G., thor Straten P., Wikby A. 2006; Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176:2645–2653
    [Google Scholar]
  14. Hislop A. D., Gudgeon N. H., Callan M. F., Fazou C., Hasegawa H., Salmon M., Rickinson A. B. 2001; EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J Immunol 167:2019–2029
    [Google Scholar]
  15. Hislop A. D., Annels N. E., Gudgeon N. H., Leese A. M., Rickinson A. B. 2002; Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein–Barr virus infection. J Exp Med 195:893–905
    [Google Scholar]
  16. Hislop A. D., Taylor G. S., Sauce D., Rickinson A. B. 2007; Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25:587–617
    [Google Scholar]
  17. Jenkins C., Abendroth A., Slobedman B. 2004; A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol 78:1440–1447
    [Google Scholar]
  18. Jenkins C., Garcia W., Abendroth A., Slobedman B. 2008; Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection. Virology 370:285–294
    [Google Scholar]
  19. Kitajima H., Okubo Y., Honda J., Yonemitsu J., Yoshida N., Fumimori T., Oizumi K. 2001; Interleukin-4 is needed for the infection of monocytes by human cytomegalovirus. Intervirology 44:264–270
    [Google Scholar]
  20. Kondo K., Kaneshima H., Mocarski E. S. 1994; Human cytomegalovirus latent infection of granulocyte–macrophage progenitors. Proc Natl Acad Sci U S A 91:11879–11883
    [Google Scholar]
  21. Kondo K., Xu J., Mocarski E. S. 1996; Human cytomegalovirus latent gene expression in granulocyte–macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci U S A 93:11137–11142
    [Google Scholar]
  22. Lathey J. L., Spector S. A. 1991; Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65:6371–6375
    [Google Scholar]
  23. Lunetta J. M., Wiedeman J. A. 2000; Latency-associated sense transcripts are expressed during in vitro human cytomegalovirus productive infection. Virology 278:467–476
    [Google Scholar]
  24. Mendelson M., Monard S., Sissons P., Sinclair J. 1996; Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 77:3099–3102
    [Google Scholar]
  25. Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. 1988; Cytotoxic T-cell clones discriminate between A- and B-type Epstein–Barr virus transformants. Nature 331:719–721
    [Google Scholar]
  26. Petrucelli A., Rak M., Grainger L., Goodrum F. 2009; Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus. J Virol 83:5615–5629
    [Google Scholar]
  27. Pouteil-Noble C., Ecochard R., Landrivon G., Donia-Maged A., Tardy J. C., Bosshard S., Colon S., Betuel H., Aymard M., Touraine J. L. 1993; Cytomegalovirus infection – an etiological factor for rejection? A prospective study in 242 renal transplant patients. Transplantation 55:851–857
    [Google Scholar]
  28. Reeves M. B., MacAry P. A., Lehner P. J., Sissons J. G., Sinclair J. H. 2005; Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102:4140–4145
    [Google Scholar]
  29. Rice G. P., Schrier R. D., Oldstone M. B. 1984; Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc Natl Acad Sci U S A 81:6134–6138
    [Google Scholar]
  30. Scott D. M., Rodgers B. C., Freeke C., Buiter J., Sissons J. G. 1989; Human cytomegalovirus and monocytes: limited infection and negligible immunosuppression in normal mononuclear cells infected in vitro with mycoplasma-free virus strains. J Gen Virol 70:685–694
    [Google Scholar]
  31. Sinclair J. 2008; Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185
    [Google Scholar]
  32. Slobedman B., Mocarski E. S. 1999; Quantitative analysis of latent human cytomegalovirus. J Virol 73:4806–4812
    [Google Scholar]
  33. Sylwester A. W., Mitchell B. L., Edgar J. B., Taormina C., Pelte C., Ruchti F., Sleath P. R., Grabstein K. H., Hosken N. A. other authors 2005; Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685
    [Google Scholar]
  34. Takiguchi M., Kawaguchi G., Sekimata M., Hiraiwa M., Kariyone A., Takamiya Y. 1994; The role of the conserved residue in pocket A and the polymorphic residue in pocket E of HLA-B*3501 in presentation of human minor histocompatibility peptides to T cells. Int Immunol 6:1345–1352
    [Google Scholar]
  35. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H. 1991; Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72:2059–2064
    [Google Scholar]
  36. Taylor-Wiedeman J., Sissons P., Sinclair J. 1994; Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 68:1597–1604
    [Google Scholar]
  37. Tellam J., Connolly G., Green K. J., Miles J. J., Moss D. J., Burrows S. R., Khanna R. 2004; Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J Exp Med 199:1421–1431
    [Google Scholar]
  38. Tellam J., Fogg M. H., Rist M., Connolly G., Tscharke D., Webb N., Heslop L., Wang F., Khanna R. 2007; Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes. J Exp Med 204:525–532
    [Google Scholar]
  39. Vescovini R., Biasini C., Fagnoni F. F., Telera A. R., Zanlari L., Pedrazzoni M., Bucci L., Monti D., Medici M. C. other authors 2007; Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol 179:4283–4291
    [Google Scholar]
  40. Waller E. C., Day E., Sissons J. G., Wills M. R. 2008; Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 197:83–96
    [Google Scholar]
  41. Yotnda P., Onishi H., Heslop H. E., Shayakhmetov D., Lieber A., Brenner M., Davis A. 2001; Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 8:930–937
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.020982-0
Loading
/content/journal/jgv/10.1099/vir.0.020982-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error