1887

Abstract

VASP is an actin-regulatory protein that links signalling to remodelling of the cytoskeleton. We investigated the role of VASP during entry of herpes simplex viruses into epithelial MDCKII cells. As VASP functions are regulated by phosphorylations, the phosphorylation pattern was determined upon infection. Phosphorylated VASP decreased temporarily at 15 and 30 min after infection. The impact of phosphorylated VASP was addressed by overexpression of phosphomimetic VASP mutants. Our results revealed that phosphorylated VASP slightly reduced the number of infected cells. Expression studies with deletion mutants further indicated minor effects of VASP on infection efficiency, whereas RNA interference studies demonstrated that reduced VASP expression did not suppress infection. We conclude that VASP activities alone may contribute to herpes simplex virus infection to only a minor extent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.021055-0
2010-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/9/2152.html?itemId=/content/journal/jgv/10.1099/vir.0.021055-0&mimeType=html&fmt=ahah

References

  1. Bachmann, C., Fischer, L., Walter, U. & Reinhard, M.(1999). The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274, 23549–23557.[CrossRef] [Google Scholar]
  2. Bear, J. E. & Gertler, F. B.(2009). Ena/VASP: towards a pointed controversy at the barbed end. J Cell Sci 122, 1947–1953.[CrossRef] [Google Scholar]
  3. Bear, J. E., Loureiro, J. J., Libova, I., Fässler, R., Wehland, J. & Gertler, F. B.(2000). Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728.[CrossRef] [Google Scholar]
  4. Benz, P. M., Blume, C., Moebius, J., Oschatz, C., Schuh, K., Sickmann, A., Walter, U., Feller, S. M. & Renné, T.(2008). Cytoskeleton assembly at endothelial cell–cell contacts is regulated by αII-spectrin–VASP complexes. J Cell Biol 180, 205–219.[CrossRef] [Google Scholar]
  5. Benz, P. M., Blume, C., Seifert, S., Wilhelm, S., Waschke, J., Schuh, K., Gertler, F., Münzel, T. & Renné, T.(2009). Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci 122, 3954–3965.[CrossRef] [Google Scholar]
  6. Blume, C., Benz, P. M., Walter, U., Ha, J., Kemp, B. E. & Renné, T.(2007). AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282, 4601–4612.[CrossRef] [Google Scholar]
  7. Butt, E., Abel, K., Krieger, M., Palm, D., Hoppe, V., Hoppe, J. & Walter, U.(1994). cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269, 14509–14517. [Google Scholar]
  8. Clement, C., Tiwari, V., Scanlan, P. M., Valyi-Nagy, T., Yue, B. Y. J. T. & Shukla, D.(2006). A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174, 1009–1021.[CrossRef] [Google Scholar]
  9. Everett, R. D.(2000). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770.[CrossRef] [Google Scholar]
  10. Gianni, T., Campadelli-Fiume, G. & Menotti, L.(2004). Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 78, 12268–12276.[CrossRef] [Google Scholar]
  11. Grosse, R., Copeland, J. W., Newsome, T. P., Way, M. & Treisman, R.(2003). A role for VASP in RhoA–Diaphanous signalling to actin dynamics and SRF activity. EMBO J 22, 3050–3061.[CrossRef] [Google Scholar]
  12. Harbeck, B., Hüttelmaier, S., Schluter, K., Jockusch, B. M. & Illenberger, S.(2000). Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 275, 30817–30825.[CrossRef] [Google Scholar]
  13. Hauser, W., Knobeloch, K. P., Eigenthaler, M., Gambaryan, S., Krenn, V., Geiger, J., Glazova, M., Rohde, E., Horak, I. & other authors(1999). Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci U S A 96, 8120–8125.[CrossRef] [Google Scholar]
  14. Heldwein, E. E. & Krummenacher, C.(2008). Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 65, 1653–1668.[CrossRef] [Google Scholar]
  15. Hoppe, S., Schelhaas, M., Jaeger, V., Liebig, T., Petermann, P. & Knebel-Mörsdorf, D.(2006). Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87, 3483–3494.[CrossRef] [Google Scholar]
  16. Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J. & Gertler, F. B.(2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19, 541–564.[CrossRef] [Google Scholar]
  17. Kwiatkowski, A. V., Gertler, F. B. & Loureiro, J. J.(2003). Function and regulation of Ena/VASP proteins. Trends Cell Biol 13, 386–392.[CrossRef] [Google Scholar]
  18. Lindsay, S. L., Ramsey, S., Aitchison, M., Renne, T. & Evans, T. J.(2007). Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 120, 3011–3021.[CrossRef] [Google Scholar]
  19. Lyman, M. G. & Enquist, L. W.(2009). Herpesvirus interactions with the host cytoskeleton. J Virol 83, 2058–2066.[CrossRef] [Google Scholar]
  20. Milne, R. S. B., Nicola, A. V., Whitbeck, J. C., Eisenberg, R. J. & Cohen, G. H.(2005). Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 79, 6655–6663.[CrossRef] [Google Scholar]
  21. Nicola, A. V. & Straus, S. E.(2004). Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78, 7508–7517.[CrossRef] [Google Scholar]
  22. Nicola, A. V., McEvoy, A. M. & Straus, S. E.(2003). Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77, 5324–5332.[CrossRef] [Google Scholar]
  23. Nicola, A. V., Hou, J., Major, E. O. & Straus, S. E.(2005). Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79, 7609–7616.[CrossRef] [Google Scholar]
  24. Petermann, P., Haase, I. & Knebel-Mörsdorf, D.(2009). Impact of Rac1 and Cdc42 signalling during early herpes simplex virus type 1 infection of keratinocytes. J Virol 83, 9759–9772.[CrossRef] [Google Scholar]
  25. Quinlan, M. P.(2004). Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways. J Cell Physiol 200, 277–290.[CrossRef] [Google Scholar]
  26. Schelhaas, M., Jansen, M., Haase, I. & Knebel-Mörsdorf, D.(2003). Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. J Gen Virol 84, 2473–2484.[CrossRef] [Google Scholar]
  27. Smolenski, A., Poller, W., Walter, U. & Lohmann, S. M.(2000). Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I. J Biol Chem 275, 25723–25732.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.021055-0
Loading
/content/journal/jgv/10.1099/vir.0.021055-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error