1887

Abstract

Replicon systems have been useful to study mechanisms of translation and replication of flavivirus RNAs. In this study, we constructed a dengue virus 4 replicon encoding a luciferase ( ) reporter, and six single-residue substitution mutants were generated: L128F and S158P in the non-structural protein (NS) 3 protease domain gene, and N96I, N390A, K437R and M805I in the NS5 gene. The effects of these substitutions on viral RNA translation and/or replication were examined by measuring activities in wild-type and mutant replicon RNA-transfected Vero cells incubated at 35, 37 and 39 °C. Our results show that none of the mutations affected translation of replicon RNAs; however, L128F and S158P of NS3 at 39 °C, and N96I of NS5 at 37 and 39 °C, presented temperature-sensitive () phenotypes for replication. Furthermore, using methyltransferase assays, we identified that the N96I mutation in NS5 exhibited a phenotype for 7-methylation, but not for 2′--methylation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.024083-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/11/2713.html?itemId=/content/journal/jgv/10.1099/vir.0.024083-0&mimeType=html&fmt=ahah

References

  1. Ackermann, M. & Padmanabhan, R.(2001).De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276, 39926–39937.[CrossRef] [Google Scholar]
  2. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnik, A. V.(2005). Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212.[CrossRef] [Google Scholar]
  3. Beasley, D. W.(2005). Recent advances in the molecular biology of West Nile virus. Curr Mol Med 5, 835–850.[CrossRef] [Google Scholar]
  4. Blaney, J. E., Jr, Johnson, D. H., Firestone, C. Y., Hanson, C. T., Murphy, B. R. & Whitehead, S. S.(2001). Chemical mutagenesis of dengue virus type 4 yields mutant viruses which are temperature sensitive in Vero cells or human liver cells and attenuated in mice. J Virol 75, 9731–9740.[CrossRef] [Google Scholar]
  5. Corver, J., Lenches, E., Smith, K., Robison, R. A., Sando, T., Strauss, E. G. & Strauss, J. H.(2003). Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77, 2265–2270.[CrossRef] [Google Scholar]
  6. Davidson, A. D.(2009). Chapter 2. New insights into flavivirus nonstructural protein 5. Adv Virus Res 74, 41–101. [Google Scholar]
  7. Dong, H., Ray, D., Ren, S., Zhang, B., Puig-Basagoiti, F., Takagi, Y., Ho, C. K., Li, H. & Shi, P.-Y.(2007). Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81, 4412–4421.[CrossRef] [Google Scholar]
  8. Dong, H., Ren, S., Zhang, B., Zhou, Y., Puig-Basagoiti, F., Li, H. & Shi, P. Y.(2008). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 82, 4295–4307.[CrossRef] [Google Scholar]
  9. Egloff, M. P., Benarroch, D., Selisko, B., Romette, J. L. & Canard, B.(2002). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21, 2757–2768.[CrossRef] [Google Scholar]
  10. Gamarnik, A.(2010). Role of the dengue virus 5′ and 3′ untranslated regions in viral replication. In Frontiers in Dengue Virus Research, pp. 55–76. Edited by Hanley, K. A. & Weaver, S. C.. Wymondham, UK. : Caister Academic Press. [Google Scholar]
  11. Gubler, D. J.(2006). Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 277, 3–16. [Google Scholar]
  12. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H.(1987). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef] [Google Scholar]
  13. Halstead, S. B.(2008). Dengue virus–mosquito interactions. Annu Rev Entomol 53, 273–291.[CrossRef] [Google Scholar]
  14. Hanley, K. A., Lee, J. J., Blaney, J. E., Jr, Murphy, B. R. & Whitehead, S. S.(2002). Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 76, 525–531.[CrossRef] [Google Scholar]
  15. Harris, E., Holden, K. L., Edgil, D., Polacek, C. & Clyde, K.(2006). Molecular biology of flaviviruses. Novartis Found Symp 277, 23–39. [Google Scholar]
  16. Hatch, S., Mathew, A. & Rothman, A.(2008). Dengue vaccine: opportunities and challenges. IDrugs 11, 42–45. [Google Scholar]
  17. Jones, C. T., Patkar, C. G. & Kuhn, R. J.(2005a). Construction and applications of yellow fever virus replicons. Virology 331, 247–259.[CrossRef] [Google Scholar]
  18. Jones, M., Davidson, A., Hibbert, L., Gruenwald, P., Schlaak, J., Ball, S., Foster, G. R. & Jacobs, M.(2005b). Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79, 5414–5420.[CrossRef] [Google Scholar]
  19. Khromykh, A. A. & Westaway, E. G.(1997). Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71, 1497–1505. [Google Scholar]
  20. Khromykh, A. A., Kenney, M. T. & Westaway, E. G.(1998).trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72, 7270–7279. [Google Scholar]
  21. Khromykh, A. A., Sedlak, P. L., Guyatt, K. J., Hall, R. A. & Westaway, E. G.(1999). Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol 73, 10272–10280. [Google Scholar]
  22. Kyle, J. L. & Harris, E.(2008). Global spread and persistence of dengue. Annu Rev Microbiol 62, 71–92.[CrossRef] [Google Scholar]
  23. Lescar, J., Luo, D., Xu, T., Sampath, A., Lim, S. P., Canard, B. & Vasudevan, S. G.(2008). Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from dengue virus as a target. Antiviral Res 80, 94–101.[CrossRef] [Google Scholar]
  24. Lindenbach, B. D. & Rice, C. M.(2003). Molecular biology of flaviviruses. Adv Virus Res 59, 23–61. [Google Scholar]
  25. Malet, H., Masse, N., Selisko, B., Romette, J. L., Alvarez, K., Guillemot, J. C., Tolou, H., Yap, T. L., Vasudevan, S. & other authors(2008). The flavivirus polymerase as a target for drug discovery. Antiviral Res 80, 23–35.[CrossRef] [Google Scholar]
  26. Miller, S., Romero-Brey, I. & Bartenschlager, R.(2010). The dengue virus replication complex. In Frontiers in Dengue Virus Research, pp. 35–53. Edited by Hanley, K. A. & Weaver, S. C.. Wymondham, UK. : Caister Academic Press. [Google Scholar]
  27. Muylaert, I. R., Galler, R. & Rice, C. M.(1997). Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71, 291–298. [Google Scholar]
  28. Padmanabhan, R. & Strongin, A. Y.(2010). Translation and processing of the dengue virus polyprotein. In Frontiers in Dengue Virus Research, pp. 14–33. Edited byHanley, K. A. & Weaver, S. C.. Wymondham, UK. : Caister Academic Press. [Google Scholar]
  29. Padmanabhan, R., Mueller, N., Reichert, E., Yon, C., Teramoto, T., Kono, Y., Takhampunya, R., Ubol, S., Pattabiraman, N. & other authors(2006). Multiple enzyme activities of flavivirus proteins. Novartis Found Symp 277, 74–84. [Google Scholar]
  30. Polo, S., Ketner, G., Levis, R. & Falgout, B.(1997). Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71, 5366–5374. [Google Scholar]
  31. Puig-Basagoiti, F., Tilgner, M., Forshey, B. M., Philpott, S. M., Espina, N. G., Wentworth, D. E., Goebel, S. J., Masters, P. S., Falgout, B. & other authors(2006). Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother 50, 1320–1329.[CrossRef] [Google Scholar]
  32. Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H. & Shi, P.-Y.(2006). West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80, 8362–8370.[CrossRef] [Google Scholar]
  33. Ribas, J. C. & Wickner, R. B.(1992). RNA-dependent RNA polymerase consensus sequence of the L-A double- stranded RNA virus: definition of essential domains. Proc Natl Acad Sci U S A 89, 2185–2189.[CrossRef] [Google Scholar]
  34. Sampath, A. & Padmanabhan, R.(2009). Molecular targets for flavivirus drug discovery. Antiviral Res 81, 6–15.[CrossRef] [Google Scholar]
  35. Shi, P.-Y., Tilgner, M. & Lo, M. K.(2002). Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 296, 219–233.[CrossRef] [Google Scholar]
  36. Tan, B. H., Fu, J., Sugrue, R. J., Yap, E. H., Chan, Y. C. & Tan, Y. H.(1996). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216, 317–325.[CrossRef] [Google Scholar]
  37. Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P.-Y. & Li, H.(2007). Structure and function of flavivirus NS5 methyltransferase. J Virol 81, 3891–3903.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.024083-0
Loading
/content/journal/jgv/10.1099/vir.0.024083-0
Loading

Data & Media loading...

Supplements

Construction of the DENV4 wild-type replicon (DENV4rep-WT) [ PDF] (120 KB)

PDF

[ PDF] (69 KB), including:

PDF

[ PDF] (57 KB), including:

PDF

Click here to download a ZIP filecontaining all supplementary files for this paper.

ARCHIVE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error