1887

Abstract

The complete nucleotide sequence of Great Island virus (GIV) genome was determined, along with genome segments (Seg) 1, 2 and 6 of Kemerovo (KEMV), Lipovnik (LIPV) and Tribec (TRBV) viruses. All four viruses, together with Broadhaven virus, are currently classified within the species and have been isolated from ticks, birds or humans. Sequence comparisons showed that Seg-4 of GIV encoded the outer-capsid protein responsible for cell attachment, although it was approximately half the length of its counterpart in the or mosquito-transmitted orbiviruses. A second overlapping ORF (in the +2 reading frame) was identified in Seg-9 of GIV, encoding a putative dsRNA-binding protein. Phylogenetic analyses of the RNA-dependent RNA polymerase (Pol) and T2 protein amino acid sequences indicated that the tick-borne orbiviruses represent an ancestral group from which the mosquito-borne orbiviruses have evolved. This mirrors the evolutionary relationships between the arthropod vectors of these viruses, supporting a co-speciation hypothesis for these arboviruses and their arthropod-vectors. Phylogenetic analyses of the T2 proteins of KEMV, LIPV, TRBV and GIV (showing 82 % amino acid identity) correlated with the early classification of Great Island viruses as two distinct serocomplexes (Great Island and Kemerovo serocomplexes). Amino acid identity levels in the VP1(Pol) and T2 proteins between the two serocomplexes were 73 and 82 %, respectively, whilst those between previously characterized species are 53–73 % and 26–83 %, respectively. These data suggest that, despite limited genome segment reassortment between these two groups, their current classification within the same species could be re-evaluated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.024760-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/12/2985.html?itemId=/content/journal/jgv/10.1099/vir.0.024760-0&mimeType=html&fmt=ahah

References

  1. Andrejeva, J., Childs, K. S., Young, D. F., Carlos, T. S., Stock, N., Goodbourn, S. & Randall, R. E.(2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci U S A 101, 17264–17269.[CrossRef] [Google Scholar]
  2. Attoui, H., Billoir, F., Biagini, P., De Micco, P. & de Lamballerie, X.(2000a). Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus (Seadornavirus) within the family Reoviridae. J Gen Virol 81, 1507–1515. [Google Scholar]
  3. Attoui, H., Billoir, F., Cantaloube, J. F., Biagini, P., De Micco, P. & de Lamballerie, X.(2000b). Strategies for the sequence determination of viral dsRNA genomes. J Virol Methods 89, 147–158.[CrossRef] [Google Scholar]
  4. Attoui, H., Stirling, J. M., Munderloh, U. G., Billoir, F., Brookes, S. M., Burroughs, J. N., de Micco, P., Mertens, P. P. C. & de Lamballerie, X.(2001). Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from Ixodes scapularis cells. J Gen Virol 82, 795–804. [Google Scholar]
  5. Attoui, H., Fang, Q., Mohd Jaafar, F., Cantaloube, J. F., Biagini, P., de Micco, P. & de Lamballerie, X.(2002). Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and Golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol 83, 1941–1951. [Google Scholar]
  6. Attoui, H., Mohd Jaafar, F., Belhouchet, M., Aldrovandi, N., Tao, S., Chen, B., Liang, G., Tesh, R. B., de Micco, P. & de Lamballerie, X.(2005).Yunnan orbivirus, a new orbivirus species isolated from Culex tritaeniorhynchus mosquitoes in China. J Gen Virol 86, 3409–3417.[CrossRef] [Google Scholar]
  7. Attoui, H., Mohd Jaafar, F., Belhouchet, M., Tao, S., Chen, B., Liang, G., Tesh, R. B., de Micco, P. & de Lamballerie, X.(2006). Liao ning virus, a new Chinese seadornavirus that replicates in transformed and embryonic mammalian cells. J Gen Virol 87, 199–208.[CrossRef] [Google Scholar]
  8. Attoui, H., Mendez-Lopez, M. R., Rao, S., Hurtado-Alendes, A., Lizaraso-Caparo, F., Mohd Jaafar, F., Samuel, A. R., Belhouchet, M., Pritchard, L. I. & other authors(2009). Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. Virology 394, 298–310.[CrossRef] [Google Scholar]
  9. Beattie, E., Denzler, K. L., Tartaglia, J., Perkus, M. E., Paoletti, E. & Jacobs, B. L.(1995). Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. J Virol 69, 499–505. [Google Scholar]
  10. Calvo, E., Pham, V. M., Marinotti, O., Andersen, J. F. & Ribeiro, J. M.(2009). The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics 10, 57–83.[CrossRef] [Google Scholar]
  11. Csorba, T., Bovi, A., Dalmay, T. & Burgyan, J.(2007). The p122 subunit of tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81, 11768–11780.[CrossRef] [Google Scholar]
  12. Gorman, B. M., Taylor, J. & Walker, P. J.(1983). Orbiviruses. In The Reoviridae , pp. 287–357. Edited by Joklik, W. K.. New York. : Plenum Press. [Google Scholar]
  13. Gresíková, M., Rajcáni, J. & Hrúzik, J.(1966). Pathogenicity of Tribec virus for Macaca rhesus monkeys and white mice. Acta Virol 10, 420–424. [Google Scholar]
  14. Grimaldi, D. & Engel, M. S.(2005).Evolution of the Insects. Cambridge. : Cambridge University Press. [Google Scholar]
  15. Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Zientara, S., Mertens, P. P. C. & Stuart, D. I.(1998). The atomic structure of the bluetongue virus core. Nature 395, 470–478.[CrossRef] [Google Scholar]
  16. Grogan, W. L. & Szadziewski, R.(1988). A new biting midge from the upper Cretaceous (Cenomanian) amber of New Jersey (Diptera: Ceratopogonidae). J Paleontol 62, 808–812. [Google Scholar]
  17. Kang, D. C., Gopalkrishnan, R. V., Wu, Q., Jankowsky, E., Pyle, A. M. & Fisher, P. B.(2002). mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99, 637–642.[CrossRef] [Google Scholar]
  18. Karabatsos, N.(1985).International Catalogue of Arboviruses including Certain Other Viruses of Vertebrates, 3rd edn. San Antonio. : American Society of Tropical Medicine and Hygiene. [Google Scholar]
  19. Klompen, J. S. H., Black, W. C., IV, Keirans, J. E. & Oliver, J. H., Jr(1996). Evolution of ticks. Annu Rev Entomol 41, 141–161.[CrossRef] [Google Scholar]
  20. Kozak, M.(1987). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196, 947–950.[CrossRef] [Google Scholar]
  21. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  22. Libikova, H., Tesarova, J. & Rajcani, J.(1970). Experimental infection of monkeys with Kemerovo virus. Acta Virol 14, 64–69. [Google Scholar]
  23. Maan, S., Maan, N. S., Samuel, A. R., Rao, S., Attoui, H. & Mertens, P. P.(2007). Analysis and phylogenetic comparisons of full-length VP2 genes of the 24 bluetongue virus serotypes. J Gen Virol 88, 621–630.[CrossRef] [Google Scholar]
  24. Major, L., Linn, M. L., Slade, R. W., Schroder, W. A., Hyatt, A. D., Gardner, J., Cowley, J. & Suhrbier, A.(2009). Ticks associated with Macquarie Island penguins carry arboviruses from four genera. PLoS ONE 4, e4375.[CrossRef] [Google Scholar]
  25. Mertens, P. P. C., Attoui, H., Duncan, R. & Dermody, T. S.(2005).Reoviridae. In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses, pp. 447–454. Edited by Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.. London. : Elsevier/Academic Press. [Google Scholar]
  26. Mohd Jaafar, F., Attoui, H., Mertens, P., de Micco, P. & de Lamballerie, X.(2005). Structural organisation of a human encephalitic isolate of Banna virus (genus Seadornavirus, family Reoviridae. J Gen Virol 86, 1147–1157.[CrossRef] [Google Scholar]
  27. Moss, S. R. & Nuttall, P. A.(1986). Isolation and characterization of temperature sensitive mutants of Broadhaven virus, a Kemerovo group orbivirus (family, Reoviridae). Virus Res 4, 331–336.[CrossRef] [Google Scholar]
  28. Moss, S. R. & Nuttall, P. A.(1994). Subcore and core-like particles of Broadhaven virus (BRDV), a tick-borne orbivirus, synthesized from baculovirus expressed VP2 and VP7, the major core proteins of BRDV. Virus Res 32, 401–407.[CrossRef] [Google Scholar]
  29. Moss, S. R., Fukusho, A. & Nuttall, P. A.(1990). RNA segment 5 of Broadhaven virus, a tick-borne orbivirus, shows sequence homology with segment 5 of bluetongue virus. Virology 179, 482–484.[CrossRef] [Google Scholar]
  30. Moss, S. R., Jones, L. D. & Nuttall, P. A.(1992). Comparison of the major structural core proteins of tick-borne and Culicoides-borne orbiviruses. J Gen Virol 73, 2585–2590.[CrossRef] [Google Scholar]
  31. Nuttall, P. A.(2009). Molecular characterization of tick–virus interactions. Front Biosci 14, 2466–2483. [Google Scholar]
  32. Nuttall, P. A. & Moss, S. R.(1989). Genetic reassortment indicates a new grouping for tick-borne orbiviruses. Virology 171, 156–161.[CrossRef] [Google Scholar]
  33. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  34. Singh, K. P., Maan, S., Samuel, A. R., Rao, S., Meyer, A. J. & Mertens, P. P.(2004). Phylogenetic analysis of bluetongue virus genome segment 6 (encoding VP5) from different serotypes. Vet Ital 40, 479–483. [Google Scholar]
  35. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  36. Wilson, K., Cahill, V., Ballment, E. & Benzie, J.(2000). The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol Biol Evol 17, 863–874.[CrossRef] [Google Scholar]
  37. Yang, Z.(1997).paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556. [Google Scholar]
  38. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. & Fujita, T.(2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.[CrossRef] [Google Scholar]
  39. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y. M., Gale, M., Jr & other authors(2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851–2858.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.024760-0
Loading
/content/journal/jgv/10.1099/vir.0.024760-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2985 - 2993

Negative-staining electron microscopy and agarose gel electropherotypes

  Comparison of amino acid sequences encoded by segments 1–10 of the GIV with their counterparts in BRDV, KEMV, LIPV, SBaV and TRBV

Amino acid identities (%) between the VP5s of GIV, BRDV, KEMV, LIPV, SBaV and TRBV

Sequences used in phylogenetic analysis of GIV [Single PDF file](176 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error