1887

Abstract

In an effort to study sequence space allowing the recovery of viable potato spindle tuber viroid (PSTVd) variants we have developed an selection (Selex) method to produce and bulk-inoculate by agroinfiltration large PSTVd cDNA banks in which a short stretch of the genome is mutagenized to saturation. This technique was applied to two highly conserved 6 nt-long regions of the PSTVd genome, the left terminal loop (TL bank) and part of the polypurine stretch in the upper strand of pre-melting loop 1 (PM1 bank). In each case, PSTVd accumulation was observed in a large fraction of bank-inoculated tomato plants. Characterization of the progeny molecules showed the recovery of the parental PSTVd sequence in 89 % (TL bank) and 18 % (PM1 bank) of the analysed plants. In addition, viable and genetically stable PSTVd variants with mutations outside of the known natural variability of PSTVd were recovered in both cases, although at different rates. In the case of the TL region, mutations were recovered at five of the six mutagenized positions (357, 358, 359, 1 and 3 of the genome) while for the PM1 region mutations were recovered at all six targeted positions (50–55), providing significant new insight on the plasticity of the PSTVd genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.026286-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/2/457.html?itemId=/content/journal/jgv/10.1099/vir.0.026286-0&mimeType=html&fmt=ahah

References

  1. Baumstark, T., Schröder, A. & Riesner, D.(1997). Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J 16, 599–610.[CrossRef] [Google Scholar]
  2. Bendahmane, A., Querci, M., Kanyuka, K. & Baulcombe, D. C.(2000).Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: Application to the Rx2 locus in potato. Plant J 21, 73–81.[CrossRef] [Google Scholar]
  3. Candresse, T., Diener, T. O. & Owens, R. A.(1990). The role of the viroid central conserved region in cDNA infectivity. Virology 175, 232–237.[CrossRef] [Google Scholar]
  4. Dingley, A. J., Steger, G., Esters, B., Riesner, D. & Grzesiek, S.(2003). Structural characterization of the 69 nucleotide potato spindle tuber viroid left-terminal domain by NMR and thermodynamic analysis. J Mol Biol 334, 751–767.[CrossRef] [Google Scholar]
  5. Flores, R., Randles, J. W. & Owens, R. A.(2003). Classification. In Viroids, pp. 71–75. Edited by Hadidi, A., Flores, R., Randles, R. W. & Semancik, J. S.. Collingwood, VIC, Australia. : CSIRO Publishing. [Google Scholar]
  6. Flores, R., Hernández, C., Martínez de Alba, A. E., Daròs, J. A. & Di Serio, F.(2005). Viroids and viroid-host interactions. Annu Rev Phytopathol 43, 117–139.[CrossRef] [Google Scholar]
  7. Gast, F. U.(2003). A new structural motif in the left terminal domain of large viroids identified by covariation analysis. Virus Genes 26, 19–23.[CrossRef] [Google Scholar]
  8. Gast, F. U., Kempe, D., Spieker, R. L. & Sänger, H. L.(1996). Secondary structure probing of potato spindle tuber viroid (PSTVd) and sequence comparison with other small pathogenic RNA replicons provides evidence for central non-canonical base-pairs, large A-rich loops, and a terminal branch. J Mol Biol 262, 652–670.[CrossRef] [Google Scholar]
  9. Góra, A., Candresse, T. & Zagórski, W.(1994). Analysis of the population structure of three phenotypically different PSTVd isolates. Arch Virol 138, 233–245.[CrossRef] [Google Scholar]
  10. Góra-Sochacka, A., Kierzek, A., Candresse, T. & Zagórski, W.(1997). The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA 3, 68–74. [Google Scholar]
  11. Gross, H. J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H. & Sänger, H. L.(1978). Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 273, 203–208.[CrossRef] [Google Scholar]
  12. Hadidi, A., Flores, R., Randles, R. W. & Semancik, J. S.(2003).Viroids. Collingwood, VIC, Australia. : CSIRO Publishing. [Google Scholar]
  13. Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D.(1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93, 9975–9979.[CrossRef] [Google Scholar]
  14. Hammond, R. W.(1994).Agrobacterium-mediated inoculation of PSTVd cDNAs onto tomato reveals the biological effects of apparently lethal mutations. Virology 201, 36–45.[CrossRef] [Google Scholar]
  15. Hammond, R. W. & Owens, R. A.(1987). Mutational analysis of potato spindle tuber viroid reveals complex relationships between structure and infectivity. Proc Natl Acad Sci U S A 84, 3967–3971.[CrossRef] [Google Scholar]
  16. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M.(2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42, 819–832.[CrossRef] [Google Scholar]
  17. Hu, Y., Feldstein, P. A., Bottino, P. J. & Owens, R. A.(1996). Role of the variable domain in modulating potato spindle tuber viroid replication. Virology 219, 45–56.[CrossRef] [Google Scholar]
  18. Hu, Y., Feldstein, P. A., Hammond, J., Hammond, R. W., Bottino, P. J. & Owens, R. A.(1997). Destabilization of potato spindle tuber viroid by mutations in the left terminal loop. J Gen Virol 78, 1199–1206. [Google Scholar]
  19. Keese, P. & Symons, R. H.(1985). Domains in viroids: evidence for intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A 82, 4582–4586.[CrossRef] [Google Scholar]
  20. Kolonko, N., Bannach, O., Aschermann, K., Hu, K. H., Moors, M., Schmitz, M., Steger, G. & Riesner, D.(2006). Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. Virology 347, 392–404.[CrossRef] [Google Scholar]
  21. Lebas, B. S. M., Clover, G. R. G., Ochoa-Corona, F. M., Elliott, D. R., Tang, Z. & Alexander, B. J. R.(2005). Distribution of potato spindle tuber viroid in New Zealand glasshouse crops of Capsicum and tomato. Australas Plant Pathol 34, 129–133.[CrossRef] [Google Scholar]
  22. Matoušek, J., Orctová, L., Steger, G., Škopek, J., Moors, M., Dědič, P. & Riesner, D.(2004a). Analysis of thermal stress-mediated PSTVd variation and biolistic inoculation of progeny of viroid ‘thermomutants’ to tomato and Brassica species. Virology 323, 9–23.[CrossRef] [Google Scholar]
  23. Matoušek, J., Orctová, L., Steger, G. & Riesner, D.(2004b). Biolistic inoculation of plants with viroid nucleic acids. J Virol Methods 122, 153–164.[CrossRef] [Google Scholar]
  24. Moore, P. B.(1999). Structural motifs in RNA. Annu Rev Biochem 68, 287–300.[CrossRef] [Google Scholar]
  25. Owens, R. A.(1990). Mutational analysis of viroid pathogenicity: tomato apical stunt viroid. Mol Plant Microbe Interact 3, 374–380.[CrossRef] [Google Scholar]
  26. Owens, R. A. & Thompson, S. M.(2005). Mutational analysis does not support the existence of a putative tertiary structural element in the left terminal domain of Potato spindle tuber viroid. J Gen Virol 86, 1835–1839.[CrossRef] [Google Scholar]
  27. Owens, R. A., Thompson, S. M. & Steger, G.(1991). Effects of random mutagenesis upon potato spindle tuber viroid replication and symptom expression. Virology 185, 18–31.[CrossRef] [Google Scholar]
  28. Owens, R. A., Chen, W., Hu, Y. & Hsu, Y. H.(1995). Suppression of potato spindle tuber viroid replication and symptom expression by mutations which stabilize the pathogenicity domain. Virology 208, 554–564.[CrossRef] [Google Scholar]
  29. Owens, R. A., Steger, G., Hu, Y., Fels, A., Hammond, R. W. & Riesner, D.(1996). RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology 222, 144–158.[CrossRef] [Google Scholar]
  30. Owens, R. A., Thompson, S. M. & Kramer, M.(2003). Identification of neutral mutants surrounding two naturally occurring variants of Potato spindle tuber viroid. J Gen Virol 84, 751–756.[CrossRef] [Google Scholar]
  31. Proctor, D. J., Schaak, J. E., Bevilacqua, J. M., Falzone, C. J. & Bevilacqua, P. C.(2002). Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. Biochemistry 41, 12062–12075.[CrossRef] [Google Scholar]
  32. Qi, Y., Pélissier, T., Itaya, A., Hunt, E., Wassenegger, M. & Ding, B.(2004). Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16, 1741–1752.[CrossRef] [Google Scholar]
  33. Schindler, I.-M. & Mühlbach, H.-P.(1992). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Sci 84, 221–229.[CrossRef] [Google Scholar]
  34. Schnölzer, M., Haas, B., Raam, K., Hofmann, H. & Sänger, H. L.(1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO J 4, 2181–2190. [Google Scholar]
  35. Schrader, O., Baumstark, T. & Riesner, D.(2003). A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle. Nucleic Acids Res 31, 988–998.[CrossRef] [Google Scholar]
  36. Shahmuradov, I. A., Gammerman, A. J., Hancock, J. M., Bramley, P. M. & Solovyev, V. V.(2003). PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31, 114–117.[CrossRef] [Google Scholar]
  37. Steger, G., Hofmann, H., Förtsch, J., Gross, H. J., Randles, J. W., Sänger, H. L. & Riesner, D.(1984). Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn 2, 543–571.[CrossRef] [Google Scholar]
  38. Tsagris, E. M., Martinez de Alba, A. E., Gozmanova, M. & Kalantidis, K.(2008). Viroids. Cell Microbiol 10, 2168–2179.[CrossRef] [Google Scholar]
  39. Wang, Y., Zhong, X., Itaya, A. & Ding, B.(2007). Evidence for the existence of the loop E motif of Potato spindle tuber viroid in vivo. J Virol 81, 2074–2077.[CrossRef] [Google Scholar]
  40. Yamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., Seki, M., Shinozaki, K. & Abe, T.(2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8, 67.[CrossRef] [Google Scholar]
  41. Zhong, X., Tao, X., Stombaugh, J., Leontis, N. & Ding, B.(2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26, 3836–3846.[CrossRef] [Google Scholar]
  42. Zhong, X., Archual, A. J., Amin, A. A. & Ding, B.(2008). A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20, 35–47.[CrossRef] [Google Scholar]
  43. Zuker, M.(2003).mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.026286-0
Loading
/content/journal/jgv/10.1099/vir.0.026286-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 457 - 466

Accumulation of PSTVd in cv. 'Rutgers' tomato plants

Accumulation of PSTVd-PM1 mutants and PSTVd-S23 in cv. 'Rutgers' tomato plants [Single PDF file](467 KB)

 



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error