1887

Abstract

Varicella-zoster virus (VZV) open reading frame 9 () mRNA is one of the most abundantly expressed messages during VZV infection. However, little is known concerning the function of ORF9 protein. Here, we found that transient expression of ORF9 fused to enhanced yellow fluorescent protein (EYFP) in COS-7 cells showed a predominantly cytoplasmic localization in the absence of other viral proteins. By constructing a series of ORF9 variants fused to EYFP, a bipartite nuclear localization signal of ORF9 was, for the first time, determined and mapped to aa 16–32 (RRKTTPSYSGQYRTARR). Additionally, the nuclear export signal (NES) was identified and found to be in a leucine-rich region at aa 103–117 (LRHELVEDAVYENPL). Finally, ORF9 was demonstrated to be targeted to the cytoplasm through the functional NES by Ran and the chromosomal region maintenance 1-dependent pathway, and to the nucleus via an importin -dependent pathway that does not require importin 5.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.027029-0
2011-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/3/621.html?itemId=/content/journal/jgv/10.1099/vir.0.027029-0&mimeType=html&fmt=ahah

References

  1. Alvisi, G., Rawlinson, S. M., Ghildyal, R., Ripalti, A. & Jans, D. A.(2008). Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? Biochim Biophys Acta 1784, 213–227.[CrossRef] [Google Scholar]
  2. Chi, N. C., Adam, E. J. & Adam, S. A.(1997). Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J Biol Chem 272, 6818–6822.[CrossRef] [Google Scholar]
  3. Cilloniz, C., Jackson, W., Grose, C., Czechowski, D., Hay, J. & Ruyechan, W. T.(2007). The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator. J Virol 81, 761–774.[CrossRef] [Google Scholar]
  4. Cohen, J. I.(1996). Varicella-zoster virus. The virus. Infect Dis Clin North Am 10, 457–468.[CrossRef] [Google Scholar]
  5. Cohrs, R. J., Hurley, M. P. & Gilden, D. H.(2003). Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virus. J Virol 77, 11718–11732.[CrossRef] [Google Scholar]
  6. Davison, A. J. & Scott, J. E.(1986). The complete DNA sequence of varicella-zoster virus. J Gen Virol 67, 1759–1816.[CrossRef] [Google Scholar]
  7. Ding, Q., Guo, H., Lin, F. S., Pan, W. W., Ye, B. & Zheng, A. C.(2010). Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res 149, 95–103.[CrossRef] [Google Scholar]
  8. Duffy, C., Mbong, E. F. & Baines, J. D.(2009). VP22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mRNAs at early times in infection. J Virol 83, 1009–1017.[CrossRef] [Google Scholar]
  9. Elliott, G. & O'Hare, P.(2000). Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division. J Virol 74, 2131–2141.[CrossRef] [Google Scholar]
  10. Emmott, E. & Hiscox, J. A.(2009). Nucleolar targeting: the hub of the matter. EMBO Rep 10, 231–238.[CrossRef] [Google Scholar]
  11. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W.(1997). Crm1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060.[CrossRef] [Google Scholar]
  12. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M. & Nishida, E.(1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311.[CrossRef] [Google Scholar]
  13. Görlich, D. & Mattaj, I. W.(1996). Nucleocytoplasmic transport. Science 271, 1513–1518.[CrossRef] [Google Scholar]
  14. Grose, C.(1981). Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 68, 735–737. [Google Scholar]
  15. Guo, H., Ding, Q., Lin, F., Pan, W., Lin, J. & Zheng, A. C.(2009). Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res 145, 312–320.[CrossRef] [Google Scholar]
  16. Guo, H., Mao, R., Block, T. M. & Guo, J. T.(2010). Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol 84, 387–396.[CrossRef] [Google Scholar]
  17. Isegawa, Y., Miyamoto, Y., Yasuda, Y., Semi, K., Tsujimura, K., Fukunaga, R., Ohshima, A., Horiguchi, Y., Yoneda, Y. & other authors(2008). Characterization of the human herpesvirus 6 U69 gene product and identification of its nuclear localization signal. J Virol 82, 710–718.[CrossRef] [Google Scholar]
  18. Kobe, B.(1999). Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat Struct Biol 6, 388–397.[CrossRef] [Google Scholar]
  19. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D.(1997). Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J 16, 1153–1163.[CrossRef] [Google Scholar]
  20. Lindsay, M. E., Holaska, J. M., Welch, K., Paschal, B. M. & Macara, I. G.(2001). Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol 153, 1391–1402.[CrossRef] [Google Scholar]
  21. Moore, M. S. & Blobel, G.(1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663.[CrossRef] [Google Scholar]
  22. Nakai, K. & Horton, P.(1999).psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24, 34–36.[CrossRef] [Google Scholar]
  23. Nakielny, S. & Dreyfuss, G.(1999). Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677–690.[CrossRef] [Google Scholar]
  24. Palacios, I., Weis, K., Klebe, C., Mattaj, I. W. & Dingwall, C.(1996). RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J Cell Biol 133, 485–494.[CrossRef] [Google Scholar]
  25. Reid, St. P., Valmas, C., Martinez, O., Sanchez, F. M. & Basler, C. F.(2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin α proteins with activated STAT1. J Virol 81, 13469–13477.[CrossRef] [Google Scholar]
  26. Ren, X., Harms, J. S. & Splitter, G. A.(2001). Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization. J Virol 75, 8251–8258.[CrossRef] [Google Scholar]
  27. Williams, P., Verhagen, J. & Elliott, G.(2008). Characterization of a CRM1-dependent nuclear export signal in the C terminus of herpes simplex virus type 1 tegument protein UL47. J Virol 82, 10946–10952.[CrossRef] [Google Scholar]
  28. Xing, J., Wu, F., Pan, W. & Zheng, C.(2010). Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. Virus Res 153, 71–81.[CrossRef] [Google Scholar]
  29. Zhang, Z., Huang, Y. & Zhu, H.(2008). A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system. J Virol Methods 148, 197–204.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.027029-0
Loading
/content/journal/jgv/10.1099/vir.0.027029-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error