1887

Abstract

Bovine noroviruses belong to the family , genus . Two genotypes have been described and viruses genetically related to the Jena and Newbury2 strains have been classified into genotypes 1 and 2, respectively. In this study, virus-like particles (VLP) of the previously detected B309 Belgian strain, genetically related to genotype 2 bovine noroviruses, were used to investigate virus–host interactions . B309 VLP were shown to bind to several bovine cell lines. This binding was not affected by heparinase or chondroitinase treatment but was significantly inhibited by both sodium periodate, α-galactosidase, trypsin and phospholipase C treatment. Cell treatment by neuraminidase also moderately affected this binding. Taken together, these results show that, in addition to a galactosyl residue, sialic acid could also be involved in binding to susceptible cells. In addition, both the cholesterol-dependent pathway and macropinocytosis are used for B309 VLP internalization by Madin–Darby bovine kidney cells. The data increase the knowledge on bovine norovirus cell interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030072-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1398.html?itemId=/content/journal/jgv/10.1099/vir.0.030072-0&mimeType=html&fmt=ahah

References

  1. Baranowski E., Ruiz-Jarabo C. M., Domingo E. 2001; Evolution of cell recognition by viruses. Science 292:1102–1105 [View Article][PubMed]
    [Google Scholar]
  2. Bridger J. C., Hall G. A., Brown J. F. 1984; Characterization of a calici-like virus (Newbury agent) found in association with astrovirus in bovine diarrhea. Infect Immun 43:133–138[PubMed]
    [Google Scholar]
  3. Cilliers T., Willey S., Sullivan W. M., Patience T., Pugach P., Coetzer M., Papathanasopoulos M., Moore J. P., Trkola A., Clapham P. 2005; Use of alternate coreceptors on primary cells by two HIV-1 isolates. Virology 339:136–144 [View Article][PubMed]
    [Google Scholar]
  4. Crawford S. E., Patel D. G., Cheng E., Berkova Z., Hyser J. M., Ciarlet M., Finegold M. J., Conner M. E., Estes M. K. 2006; Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol 80:4820–4832 [View Article][PubMed]
    [Google Scholar]
  5. Duizer E., Schwab K. J., Neill F. H., Atmar R. L., Koopmans M. P., Estes M. K. 2004; Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87 [View Article][PubMed]
    [Google Scholar]
  6. Gerondopoulos A., Jackson T., Monaghan P., Doyle N., Roberts L. O. 2010; Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J Gen Virol 91:1428–1438 [View Article][PubMed]
    [Google Scholar]
  7. Girao H., Geli M. I., Idrissi F. Z. 2008; Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 582:2112–2119 [View Article][PubMed]
    [Google Scholar]
  8. Green K. Y. 2007; Caliciviridae: The Noroviruses. In Fields Virology, 5th edn. pp. 949–979 Edited by Knipe D. M. Philadelphia, USA: Lippinscott Williams & Wilkins;
    [Google Scholar]
  9. Han M. G., Smiley J. R., Thomas C., Saif L. J. 2004; Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. J Clin Microbiol 42:5214–5224 [View Article][PubMed]
    [Google Scholar]
  10. Han M. G., Wang Q., Smiley J. R., Chang K. O., Saif L. J. 2005; Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses. J Clin Microbiol 43:778–785 [View Article][PubMed]
    [Google Scholar]
  11. Harouse J. M., Laughlin M. A., Pletcher C., Friedman H. M., Gonzalez-Scarano F. 1991; Entry of human immunodeficiency virus-1 into glial cells proceeds via an alternate, efficient pathway. J Leukoc Biol 49:605–609[PubMed]
    [Google Scholar]
  12. Ike A. C., Roth B. N., Böhm R., Pfitzner A. J., Marschang R. E. 2007; Identification of bovine enteric Caliciviruses (BEC) from cattle in Baden-Württemberg. Dtsch Tierarztl Wochenschr 114:12–15[PubMed]
    [Google Scholar]
  13. Jiang X., Wang M., Graham D. Y., Estes M. K. 1992; Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66:6527–6532[PubMed]
    [Google Scholar]
  14. Jin Q., Alkhatib B., Cornetta K., Alkhatib G. 2010; Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1. Virology 396:203–212 [View Article][PubMed]
    [Google Scholar]
  15. Khan A. G., Pichler J., Rosemann A., Blaas D. 2007; Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. J Virol 81:4625–4632 [View Article][PubMed]
    [Google Scholar]
  16. Liu B. L., Lambden P. R., Günther H., Otto P., Elschner M., Clarke I. N. 1999; Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol 73:819–825[PubMed]
    [Google Scholar]
  17. Loret S., Rusu D., El Moualij B., Taminiau B., Heinen E., Dandrifosse G., Mainil J. 2009; Preliminary characterization of jejunocyte and colonocyte cell lines isolated by enzymatic digestion from adult and young cattle. Res Vet Sci 87:123–132 [View Article][PubMed]
    [Google Scholar]
  18. Macher B. A., Galili U. 2008; The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780:75–88[PubMed] [CrossRef]
    [Google Scholar]
  19. Makino A., Shimojima M., Miyazawa T., Kato K., Tohya Y., Akashi H. 2006; Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 80:4482–4490 [View Article][PubMed]
    [Google Scholar]
  20. Marsh M., Helenius A. 2006; Virus entry: open sesame. Cell 124:729–740 [View Article][PubMed]
    [Google Scholar]
  21. Mauroy A., Scipioni A., Mathijs E., Miry C., Ziant D., Thys C., Thiry E. 2008; Noroviruses and sapoviruses in pigs in Belgium. Arch Virol 153:1927–1931 [View Article][PubMed]
    [Google Scholar]
  22. Mauroy A., Scipioni A., Mathijs E., Saegerman C., Mast J., Bridger J. C., Ziant D., Thys C., Thiry E. 2009a). Epidemiological study of bovine norovirus infection by RT-PCR and a VLP-based antibody ELISA. Vet Microbiol 137:243–251 [View Article][PubMed]
    [Google Scholar]
  23. Mauroy A., Scipioni A., Mathijs E., Thys C., Thiry E. 2009b). Molecular detection of kobuviruses and recombinant noroviruses in cattle in continental Europe. Arch Virol 154:1841–1845 [View Article][PubMed]
    [Google Scholar]
  24. Miller N., Hutt-Fletcher L. M. 1992; Epstein–Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414[PubMed]
    [Google Scholar]
  25. Milnes A. S., Binns S. H., Oliver S. L., Bridger J. C. 2007; Retrospective study of noroviruses in samples of diarrhoea from cattle, using the Veterinary Laboratories Agency’s Farmfile database. Vet Rec 160:326–330 [View Article][PubMed]
    [Google Scholar]
  26. Negrete O. A., Wolf M. C., Aguilar H. C., Enterlein S., Wang W., Mühlberger E., Su S. V., Bertolotti-Ciarlet A., Flick R., Lee B. 2006; Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2:e7 [View Article][PubMed]
    [Google Scholar]
  27. Nilsson J., Rydell G. E., Le Pendu J., Larson G. 2009; Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids. Glycoconj J 26:1171–1180 [View Article][PubMed]
    [Google Scholar]
  28. Nordgren J., Kindberg E., Lindgren P. E., Matussek A., Svensson L. 2010; Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg Infect Dis 16:81–87 [View Article][PubMed]
    [Google Scholar]
  29. Oliver S. L., Asobayire E., Charpilienne A., Cohen J., Bridger J. C. 2007; Complete genomic characterization and antigenic relatedness of genogroup III, genotype 2 bovine noroviruses. Arch Virol 152:257–272 [View Article][PubMed]
    [Google Scholar]
  30. Ossiboff R. J., Parker J. S. 2007; Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. J Virol 81:13608–13621 [View Article][PubMed]
    [Google Scholar]
  31. Park S. I., Jeong C., Kim H. H., Park S. H., Park S. J., Hyun B. H., Yang D. K., Kim S. K., Kang M. I., Cho K. O. 2007; Molecular epidemiology of bovine noroviruses in South Korea. Vet Microbiol 124:125–133 [View Article][PubMed]
    [Google Scholar]
  32. Perry J. W., Wobus C. E. 2010; Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J Virol 84:6163–6176 [View Article][PubMed]
    [Google Scholar]
  33. Perry J. W., Taube S., Wobus C. E. 2009; Murine norovirus-1 entry into permissive macrophages and dendritic cells is pH-independent. Virus Res 143:125–129 [View Article][PubMed]
    [Google Scholar]
  34. Ruvoën-Clouet N., Ganière J. P., André-Fontaine G., Blanchard D., Le Pendu J. 2000; Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol 74:11950–11954 [View Article][PubMed]
    [Google Scholar]
  35. Rydell G. E., Nilsson J., Rodriguez-Diaz J., Ruvoën-Clouet N., Svensson L., Le Pendu J., Larson G. 2009; Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 19:309–320 [View Article][PubMed]
    [Google Scholar]
  36. Scipioni A., Mauroy A., Vinjé J., Thiry E. 2008; Animal noroviruses. Vet J 178:32–45 [View Article][PubMed]
    [Google Scholar]
  37. Sieczkarski S. B., Whittaker G. R. 2002; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545[PubMed]
    [Google Scholar]
  38. Smith A. E., Helenius A. 2004; How viruses enter animal cells. Science 304:237–242 [View Article][PubMed]
    [Google Scholar]
  39. Stuart A. D., Brown T. D. 2006; Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 80:7500–7509 [View Article][PubMed]
    [Google Scholar]
  40. Stuart A. D., Brown T. D. 2007; α2,6-linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 88:177–186 [View Article][PubMed]
    [Google Scholar]
  41. Tamura M., Natori K., Kobayashi M., Miyamura T., Takeda N. 2004; Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 78:3817–3826 [View Article][PubMed]
    [Google Scholar]
  42. Tan M., Jiang X. 2005; Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293 [View Article][PubMed]
    [Google Scholar]
  43. Tan M., Huang P., Meller J., Zhong W., Farkas T., Jiang X. 2003; Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 77:12562–12571 [View Article][PubMed]
    [Google Scholar]
  44. Taube S., Perry J. W., Yetming K., Patel S. P., Auble H., Shu L., Nawar H. F., Lee C. H., Connell T. D. et al. 2009; Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83:4092–4101 [View Article][PubMed]
    [Google Scholar]
  45. van der Poel W. H., van der Heide R., Verschoor F., Gelderblom H., Vinjé J., Koopmans M. P. 2003; Epidemiology of Norwalk-like virus infections in cattle in The Netherlands. Vet Microbiol 92:297–309 [View Article][PubMed]
    [Google Scholar]
  46. Vanderplasschen A., Bublot M., Dubuisson J., Pastoret P. P., Thiry E. 1993; Attachment of the gammaherpesvirus bovine herpesvirus 4 is mediated by the interaction of gp8 glycoprotein with heparinlike moieties on the cell surface. Virology 196:232–240 [View Article][PubMed]
    [Google Scholar]
  47. Villanueva R. A., Rouillé Y., Dubuisson J. 2005; Interactions between virus proteins and host cell membranes during the viral life cycle. Int Rev Cytol 245:171–244 [View Article][PubMed]
    [Google Scholar]
  48. Wise A. G., Monroe S. S., Hanson L. E., Grooms D. L., Sockett D., Maes R. K. 2004; Molecular characterization of noroviruses detected in diarrheic stools of Michigan and Wisconsin dairy calves: circulation of two distinct subgroups. Virus Res 100:165–177 [View Article][PubMed]
    [Google Scholar]
  49. Woode G. N., Bridger J. C. 1978; Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. J Med Microbiol 11:441–452 [View Article][PubMed]
    [Google Scholar]
  50. Yanagi Y., Takeda M., Ohno S., Hashiguchi T. 2009; Measles virus receptors. Curr Top Microbiol Immunol 329:13–30 [View Article][PubMed]
    [Google Scholar]
  51. Zakhour M., Ruvoën-Clouet N., Charpilienne A., Langpap B., Poncet D., Peters T., Bovin N., Le Pendu J. 2009; The αGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog 5:e1000504 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030072-0
Loading
/content/journal/jgv/10.1099/vir.0.030072-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error