1887

Abstract

The difficulty of eliminating herpesvirus carriage makes host entry a key target for infection control. However, its viral requirements are poorly defined. Murid herpesvirus-4 (MuHV-4) can potentially provide insights into gammaherpesvirus host entry. Upper respiratory tract infection requires the MuHV-4 thymidine kinase (TK) and ribonucleotide reductase large subunit (RNR-L), suggesting a need for increased nucleotide production. However, both TK and RNR-L are likely to be multifunctional. We therefore tested further the importance of nucleotide production by disrupting the MuHV-4 ribonucleotide reductase small subunit (RNR-S). This caused a similar attenuation to RNR-L disruption: despite reduced intra-host spread, invasive inoculations still established infection, whereas a non-invasive upper respiratory tract inoculation did so only at high dose. Histological analysis showed that RNR-S, RNR-L and TK viruses all infected cells in the olfactory neuroepithelium but unlike wild-type virus then failed to spread. Thus captured host nucleotide metabolism enzymes, up to now defined mainly as important for alphaherpesvirus reactivation in neurons, also have a key role in gammaherpesvirus host entry. This seemed to reflect a requirement for lytic replication to occur in a terminally differentiated cell before a viable pool of latent genomes could be established.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.031542-0
2011-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1550.html?itemId=/content/journal/jgv/10.1099/vir.0.031542-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [View Article][PubMed]
    [Google Scholar]
  2. Ator M. A., Stubbe J., Spector T. 1986; Mechanism of ribonucleotide reductase from herpes simplex virus type 1. Evidence for 3′ carbon-hydrogen bond cleavage and inactivation by nucleotide analogs. J Biol Chem 261:3595–3599[PubMed]
    [Google Scholar]
  3. Brune W., Ménard C., Heesemann J., Koszinowski U. H. 2001; A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291:303–305 [View Article][PubMed]
    [Google Scholar]
  4. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol 69:2607–2612 [View Article][PubMed]
    [Google Scholar]
  5. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736–4740 [View Article][PubMed]
    [Google Scholar]
  6. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [View Article][PubMed]
    [Google Scholar]
  7. Conner J., Marsden H., Clements J. B. 1994; Ribonucleotide reductase of herpes viruses. Rev Med Virol 4:25–34 [View Article]
    [Google Scholar]
  8. Darby G. 1993; The acyclovir legacy: its contribution to antiviral drug discovery. J Med Virol 41:Suppl. 1134–138 [View Article][PubMed]
    [Google Scholar]
  9. Davison A. J., Stow N. D. 2005; New genes from old: redeployment of dUTPase by herpesviruses. J Virol 79:12880–12892 [View Article][PubMed]
    [Google Scholar]
  10. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [View Article][PubMed]
    [Google Scholar]
  11. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70:869–879 [View Article][PubMed]
    [Google Scholar]
  12. Faulkner G. C., Krajewski A. S., Crawford D. H. 2000; The ins and outs of EBV infection. Trends Microbiol 8:185–189 [View Article][PubMed]
    [Google Scholar]
  13. Ganem D. 2006; KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 1:273–296 [View Article][PubMed]
    [Google Scholar]
  14. Gaspar M., Gill M. B., Lösing J. B., May J. S., Stevenson P. G. 2008; Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS ONE 3:e2781 [View Article][PubMed]
    [Google Scholar]
  15. Gill M. B., Murphy J. E., Fingeroth J. D. 2005; Functional divergence of Kaposi's sarcoma-associated herpesvirus and related gamma-2 herpesvirus thymidine kinases: novel cytoplasmic phosphoproteins that alter cellular morphology and disrupt adhesion. J Virol 79:14647–14659 [View Article][PubMed]
    [Google Scholar]
  16. Gill M. B., Wright D. E., Smith C. M., May J. S., Stevenson P. G. 2009; Murid herpesvirus-4 lacking thymidine kinase reveals route-dependent requirements for host colonization. J Gen Virol 90:1461–1470 [View Article][PubMed]
    [Google Scholar]
  17. Gill M. B., May J. S., Colaco S., Stevenson P. G. 2010; Important role for the murid herpesvirus 4 ribonucleotide reductase large subunit in host colonization via the respiratory tract. J Virol 84:10937–10942 [View Article][PubMed]
    [Google Scholar]
  18. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007; The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS ONE 2:e705 [View Article][PubMed]
    [Google Scholar]
  19. Gustafson E. A., Chillemi A. C., Sage D. R., Fingeroth J. D. 1998; The Epstein–Barr virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob Agents Chemother 42:2923–2931[PubMed]
    [Google Scholar]
  20. Hoagland R. J. 1964; The incubation period of infectious mononucleosis. Am J Public Health Nations Health 54:1699–1705 [View Article][PubMed]
    [Google Scholar]
  21. Hoshino Y., Katano H., Zou P., Hohman P., Marques A., Tyring S. K., Follmann D., Cohen J. I. 2009; Long-term administration of valacyclovir reduces the number of Epstein–Barr virus (EBV)-infected B cells but not the number of EBV DNA copies per B cell in healthy volunteers. J Virol 83:11857–11861 [View Article][PubMed]
    [Google Scholar]
  22. Hutt-Fletcher L. M. 2007; Epstein–Barr virus entry. J Virol 81:7825–7832 [View Article][PubMed]
    [Google Scholar]
  23. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283 [View Article][PubMed]
    [Google Scholar]
  24. Jordan A., Reichard P. 1998; Ribonucleotide reductases. Annu Rev Biochem 67:71–98 [View Article][PubMed]
    [Google Scholar]
  25. Kayhan B., Yager E. J., Lanzer K., Cookenham T., Jia Q., Wu T. T., Woodland D. L., Sun R., Blackman M. A. 2007; A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. J Immunol 179:8392–8402[PubMed] [CrossRef]
    [Google Scholar]
  26. Langelier Y., Bergeron S., Chabaud S., Lippens J., Guilbault C., Sasseville A. M., Denis S., Mosser D. D., Massie B. 2002; The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83:2779–2789[PubMed]
    [Google Scholar]
  27. Milho R., Smith C. M., Marques S., Alenquer M., May J. S., Gillet L., Gaspar M., Efstathiou S., Simas J. P., Stevenson P. G. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90:21–32 [View Article][PubMed]
    [Google Scholar]
  28. Moorman N. J., Lin C. Y., Speck S. H. 2004; Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78:10282–10290 [View Article][PubMed]
    [Google Scholar]
  29. Moser J. M., Farrell M. L., Krug L. T., Upton J. W., Speck S. H. 2006; A gammaherpesvirus 68 gene 50 null mutant establishes long-term latency in the lung but fails to vaccinate against a wild-type virus challenge. J Virol 80:1592–1598 [View Article][PubMed]
    [Google Scholar]
  30. Pica F., Volpi A. 2007; Transmission of human herpesvirus 8: an update. Curr Opin Infect Dis 20:152–156 [View Article][PubMed]
    [Google Scholar]
  31. Pontarin G., Fijolek A., Pizzo P., Ferraro P., Rampazzo C., Pozzan T., Thelander L., Reichard P. A., Bianchi V. 2008; Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 105:17801–17806 [View Article][PubMed]
    [Google Scholar]
  32. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849[PubMed]
    [Google Scholar]
  33. Shannon-Lowe C., Adland E., Bell A. I., Delecluse H. J., Rickinson A. B., Rowe M. 2009; Features distinguishing Epstein–Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol 83:7749–7760 [View Article][PubMed]
    [Google Scholar]
  34. Song M. J., Hwang S., Wong W. H., Wu T. T., Lee S., Liao H. I., Sun R. 2005; Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [View Article][PubMed]
    [Google Scholar]
  35. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740[PubMed]
    [Google Scholar]
  36. Stevenson P. G., Simas J. P., Efstathiou S. 2009; Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90:2317–2330 [View Article][PubMed]
    [Google Scholar]
  37. Terry L. A., Stewart J. P., Nash A. A., Fazakerley J. K. 2000; Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81:2635–2643[PubMed]
    [Google Scholar]
  38. Tibbetts S. A., Suarez F., Steed A. L., Simmons J. A., Virgin H. W. IV 2006; A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 353:210–219 [View Article][PubMed]
    [Google Scholar]
  39. Upton J. W., Kaiser W. J., Mocarski E. S. 2010; Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313 [View Article][PubMed]
    [Google Scholar]
  40. Virgin H. W. IV, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904[PubMed]
    [Google Scholar]
  41. Wnuk S. F., Robins M. J. 2006; Ribonucleotide reductase inhibitors as anti-herpes agents. Antiviral Res 71:122–126 [View Article][PubMed]
    [Google Scholar]
  42. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. 1991; The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis 164:1091–1097 [View Article][PubMed]
    [Google Scholar]
  43. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989; Epstein–Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer 43:67–71 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.031542-0
Loading
/content/journal/jgv/10.1099/vir.0.031542-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error