1887

Abstract

The presence of West Nile virus (WNV) was first documented in California, USA, during the summer of 2003, and subsequently the virus has become endemic throughout the state. Sequence analysis has demonstrated that the circulating strains are representative of the North American (WN02) genotype that has displaced the East Coast genotype (NY99). A recent study has indicated that enhanced vector competence at elevated temperatures may have played a role in the displacement of the East Coast genotype by WN02. In the current study, four WN02 strains from California, including an initial 2003 isolate (COAV997), were compared to strain NY99 in growth curve assays in mosquito and duck embryonic fibroblast (DEF) cell lines at differing, biologically relevant temperatures to assess the relative temperature sensitivities of these natural isolates. COAV997 was significantly debilitated in viral replication in DEF cells at 44 °C. Full-length sequence comparison of COAV997 against the NY99 reference strain revealed non-synonymous mutations in the envelope glycoprotein (V159A), non-structural protein 1 (NS1) (K110N) and non-structural protein 4A (NS4A) (F92L), as well as two mutations in the 3′ UTR: C→T at nt 10 772 and A→G at nt 10 851. These non-synonymous mutations were introduced into the NY99 viral backbone by site-directed mutagenesis. A mutant containing the NS1-K110N and NS4A-F92L mutations exhibited a debilitated growth phenotype in DEF cells at 44 °C, similar to that of COAV997. One explanation for the subsistence of this genotype is that COAV997 was obtained from an area of California where avian host species might not present elevated temperatures. These data indicate that the NS1 and NS4A mutations identified in some WN02 isolates could reduce thermal stability and impede replication of virus at temperatures observed in febrile avian hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032318-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2523.html?itemId=/content/journal/jgv/10.1099/vir.0.032318-0&mimeType=html&fmt=ahah

References

  1. Andrade C. C., Maharaj P. D., Reisen W. K., Brault A. C. 2010; Effect of temperature on West Nile virus replication in different host cell types: potential for altered transmission cycles in California. Proc Annu Conf Mosq Vector Control Assoc Calif 78:12–15
    [Google Scholar]
  2. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [View Article][PubMed]
    [Google Scholar]
  3. Brackney D. E., Scott J. C., Sagawa F., Woodward J. E., Miller N. A., Schilkey F. D., Mudge J., Wilusz J., Olson K. E. et al. 2010; C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4:e856 [View Article][PubMed]
    [Google Scholar]
  4. Brault A. C., Langevin S. A., Bowen R. A., Panella N. A., Biggerstaff B. J., Miller B. R., Komar N. 2004; Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10:2161–2168[PubMed] [CrossRef]
    [Google Scholar]
  5. Brault A. C., Huang C. Y., Langevin S. A., Kinney R. M., Bowen R. A., Ramey W. N., Panella N. A., Holmes E. C., Powers A. M., Miller B. R. 2007; A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39:1162–1166 [View Article][PubMed]
    [Google Scholar]
  6. Brinton M. A. 2002; The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402 [View Article][PubMed]
    [Google Scholar]
  7. Coffey L. L., Vasilakis N., Brault A. C., Powers A. M., Tripet F., Weaver S. C. 2008; Arbovirus evolution in vivo is constrained by host alternation. Proc Natl Acad Sci U S A 105:6970–6975 [View Article][PubMed]
    [Google Scholar]
  8. Cornel A. J., Jupp P. G., Blackburn N. K. 1993; Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus. J Med Entomol 30:449–456[PubMed] [CrossRef]
    [Google Scholar]
  9. Davis C. T., Beasley D. W., Guzman H., Siirin M., Parsons R. E., Tesh R. B., Barrett A. D. 2004; Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330:342–350 [View Article][PubMed]
    [Google Scholar]
  10. Davis C. T., Ebel G. D., Lanciotti R. S., Brault A. C., Guzman H., Siirin M., Lambert A., Parsons R. E., Beasley D. W., Novak R. 2005; Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype. Virology 342:252–265 [View Article][PubMed]
    [Google Scholar]
  11. Davis C. T., Galbraith S. E., Zhang S., Whiteman M. C., Li L., Kinney R. M., Barrett A. D. 2007; A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3′ untranslated region alters virus phenotype. J Virol 81:6111–6116 [View Article][PubMed]
    [Google Scholar]
  12. Deardorff E., Estrada-Franco J., Brault A. C., Navarro-Lopez R., Campomanes-Cortes A., Paz-Ramirez P., Solis-Hernandez M., Ramey W. N., Davis C. T. et al. 2006; Introductions of West Nile virus strains to Mexico. Emerg Infect Dis 12:314–318[PubMed] [CrossRef]
    [Google Scholar]
  13. Ebel G. D., Carricaburu J., Young D., Bernard K. A., Kramer L. D. 2004; Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71:493–500[PubMed]
    [Google Scholar]
  14. Eidson M., Komar N., Sorhage F., Nelson R., Talbot T., Mostashari F., McLean R. West Nile Virus Avian Mortality Surveillance Group 2001; Crow deaths as a sentinel surveillance system for West Nile virus in the northeastern United States, 1999. Emerg Infect Dis 7:615–620 [View Article][PubMed]
    [Google Scholar]
  15. Ernest H. B., Woods L. W., Hoar B. R. 2010; Pathology associated with West Nile virus infections in the yellow-billed magpie (Pica nuttalli): a California endemic bird. J Wildl Dis 46:401–408[PubMed] [CrossRef]
    [Google Scholar]
  16. Hayes E. B., Sejvar J. J., Zaki S. R., Lanciotti R. S., Bode A. V., Campbell G. L. 2005; Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179[PubMed] [CrossRef]
    [Google Scholar]
  17. Hintze, J. (1998). NCSS Statistical Software
  18. Hom A., Marcus L., Kramer V. L., Cahoon B., Glaser C., Cossen C., Baylis E., Jean C., Tu E. et al. 2005; Surveillance for mosquito-borne encephalitis virus activity and human disease, including West Nile virus, in California, 2004. Proc Pap Annu Conf Calif Mosq Control Assoc 73:66–77
    [Google Scholar]
  19. Jerzak G. V., Brown I., Shi P. Y., Kramer L. D., Ebel G. D. 2008; Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology 374:256–260 [View Article][PubMed]
    [Google Scholar]
  20. Jia Y., Moudy R. M., Dupuis A. P. II, Ngo K. A., Maffei J. G., Jerzak G. V., Franke M. A., Kauffman E. B., Kramer L. D. 2007; Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367:339–347 [View Article][PubMed]
    [Google Scholar]
  21. Kilpatrick A. M., Meola M. A., Moudy R. M., Kramer L. D. 2008; Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4:e1000092 [View Article][PubMed]
    [Google Scholar]
  22. Kinney R. M., Huang C. Y., Whiteman M. C., Bowen R. A., Langevin S. A., Miller B. R., Brault A. C. 2006; Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol 87:3611–3622 [View Article][PubMed]
    [Google Scholar]
  23. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B. et al. 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337 [View Article][PubMed]
    [Google Scholar]
  24. Lanciotti R. S., Ebel G. D., Deubel V., Kerst A. J., Murri S., Meyer R., Bowen M., McKinney N., Morrill W. E. et al. 2002; Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105 [View Article][PubMed]
    [Google Scholar]
  25. Lin C. W., Cheng C. W., Yang T. C., Li S. W., Cheng M. H., Wan L., Lin Y. J., Lai C. H., Lin W. Y., Kao M. C. 2008; Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42. Virus Res 137:49–55 [View Article][PubMed]
    [Google Scholar]
  26. Lindenbach B. D., Rice C. M. 1999; Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621[PubMed]
    [Google Scholar]
  27. MacKenzie J. M., Jones M. K., Young P. R. 1996; Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–240 [View Article][PubMed]
    [Google Scholar]
  28. Miller S., Kastner S., Krijnse-Locker J., Bühler S., Bartenschlager R. 2007; The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282:8873–8882 [View Article][PubMed]
    [Google Scholar]
  29. Moudy R. M., Meola M. A., Morin L. L., Ebel G. D., Kramer L. D. 2007; A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77:365–370[PubMed]
    [Google Scholar]
  30. Muylaert I. R., Galler R., Rice C. M. 1997; Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71:291–298[PubMed]
    [Google Scholar]
  31. Reisen W., Lothrop H., Chiles R., Madon M., Cossen C., Woods L., Husted S., Kramer V., Edman J. 2004; West Nile virus in California. Emerg Infect Dis 10:1369–1378[PubMed] [CrossRef]
    [Google Scholar]
  32. Reisen W. K., Fang Y., Martinez V. M. 2006; Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43:309–317 [View Article][PubMed]
    [Google Scholar]
  33. Reisen W. K., Lothrop H. D., Wheeler S. S., Kennsington M., Gutierrez A., Fang Y., Garcia S., Lothrop B. 2008; Persistent West Nile virus transmission and the apparent displacement St. Louis encephalitis virus in southeastern California, 2003–2006. J Med Entomol 45:494–508 [View Article][PubMed]
    [Google Scholar]
  34. Scott T. W., Weaver S. C., Mallampalli V. L. 1994; Evolution of mosquito-borne viruses. In The Evolutionary Biology of Viruses pp. 293–324 Edited by Morse S. S. New York: Raven Press;
    [Google Scholar]
  35. Shiryaev S. A., Chernov A. V., Aleshin A. E., Shiryaeva T. N., Strongin A. Y. 2009; NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. J Gen Virol 90:2081–2085 [View Article][PubMed]
    [Google Scholar]
  36. Szittya G., Silhavy D., Molnár A., Havelda Z., Lovas A., Lakatos L., Bánfalvi Z., Burgyán J. 2003; Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640 [View Article][PubMed]
    [Google Scholar]
  37. Wheeler S. S., Barker C. M., Fang Y., Armijos M. V., Carroll B. D., Husted S., Johnson W. O., Reisen W. K. 2009; Differential impact of West Nile virus on California birds. Condor 111:1–20 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032318-0
Loading
/content/journal/jgv/10.1099/vir.0.032318-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error