1887

Abstract

Release of herpes simplex virus type 1 (HSV-1) nucleocapsids from the host nucleus relies on the nuclear egress complex consisting of the two essential proteins pUL34 and pUL31. The cytoplasmically exposed N-terminal region of pUL34 interacts with pUL31, while a hydrophobic region followed by a short luminal part mediates membrane association. Based on its domain organization, pUL34 was postulated to be a tail-anchor (TA) protein. We performed a coupled transcription/translation assay to show that membrane insertion of pUL34 occurs post-translationally. Transient transfection and localization experiments in mammalian cells were combined with HSV-1 bacterial artificial chromosome mutagenesis to reveal the functional properties of the essential pUL34 TA. Our data show that a minimal tail length of 15 residues is sufficient for nuclear envelope targeting and pUL34 function. Permutations of the pUL34 TA with orthologous regions of human cytomegalovirus pUL50 or Epstein–Barr virus pBFRF1 as well as the heterologous HSV-1 TA proteins pUL56 or pUS9 or the cellular TA proteins Bcl-2 and Vamp2 revealed that nuclear egress tolerates TAs varying in sequence and hydrophobicity, while a non-α-helical membrane anchor failed to complement the pUL34 function. In conclusion, this study provides the first mechanistic insights into the particular role of the TA of pUL34 in membrane curving and capsid egress from the host nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.032730-0
2011-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/12/2734.html?itemId=/content/journal/jgv/10.1099/vir.0.032730-0&mimeType=html&fmt=ahah

References

  1. Baines J. D. 2007; Envelopment of herpes simplex virus nucleocapsids at the inner nuclear membrane. In Human Herpesviruses: Biology, Therapy and Immunoprophylaxis pp. 144–150 Edited by Arvin A., Campadelli-Fiume G., Mocarski E., Moore P. S., Roizman B., Whitley R., Yamanishi K. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Baines J. D., Hsieh C. E., Wills E., Mannella C., Marko M. 2007; Electron tomography of nascent herpes simplex virus virions. J Virol 81:2726–2735 [View Article][PubMed]
    [Google Scholar]
  3. Bjerke S. L., Cowan J. M., Kerr J. K., Reynolds A. E., Baines J. D., Roller R. J. 2003; Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol 77:7601–7610 [View Article][PubMed]
    [Google Scholar]
  4. Borgese N., Fasana E. 2011; Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808:937–946 [View Article][PubMed]
    [Google Scholar]
  5. Camozzi D., Pignatelli S., Valvo C., Lattanzi G., Capanni C., Dal Monte P., Landini M. P. 2008; Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89:731–740 [View Article][PubMed]
    [Google Scholar]
  6. Chang Y. E., Roizman B. 1993; The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix. J Virol 67:6348–6356[PubMed]
    [Google Scholar]
  7. Chang Y. E., Van Sant C., Krug P. W., Sears A. E., Roizman B. 1997; The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 71:8307–8315[PubMed]
    [Google Scholar]
  8. Corrigan D. P., Kuszczak D., Rusinol A. E., Thewke D. P., Hrycyna C. A., Michaelis S., Sinensky M. S. 2005; Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem J 387:129–138 [View Article][PubMed]
    [Google Scholar]
  9. Dal Monte P., Pignatelli S., Zini N., Maraldi N. M., Perret E., Prevost M. C., Landini M. P. 2002; Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 83:1005–1012[PubMed]
    [Google Scholar]
  10. Dölken L., Krmpotic A., Kothe S., Tuddenham L., Tanguy M., Marcinowski L., Ruzsics Z., Elefant N., Altuvia Y. et al. other authors 2010; Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6:e1001150 [View Article][PubMed]
    [Google Scholar]
  11. Dudek J., Volkmer J., Bies C., Guth S., Müller A., Lerner M., Feick P., Schäfer K. H., Morgenstern E. et al. other authors 2002; A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21:2958–2967 [View Article][PubMed]
    [Google Scholar]
  12. Dudek J., Greiner M., Müller A., Hendershot L. M., Kopsch K., Nastainczyk W., Zimmermann R. 2005; ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 12:1008–1014[PubMed] [CrossRef]
    [Google Scholar]
  13. Fairley E. A., Kendrick-Jones J., Ellis J. A. 1999; The Emery-Dreifuss muscular dystrophy phenotype arises from aberrant targeting and binding of emerin at the inner nuclear membrane. J Cell Sci 112:2571–2582[PubMed]
    [Google Scholar]
  14. Farina A., Santarelli R., Gonnella R., Bei R., Muraro R., Cardinali G., Uccini S., Ragona G., Frati L. et al. other authors 2000; The BFRF1 gene of Epstein–Barr virus encodes a novel protein. J Virol 74:3235–3244 [View Article][PubMed]
    [Google Scholar]
  15. Foisner R. 2001; Inner nuclear membrane proteins and the nuclear lamina. J Cell Sci 114:3791–3792[PubMed]
    [Google Scholar]
  16. Fossum E., Friedel C. C., Rajagopala S. V., Titz B., Baiker A., Schmidt T., Kraus T., Stellberger T., Rutenberg C. et al. other authors 2009; Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog 5:e1000570 [View Article][PubMed]
    [Google Scholar]
  17. Fuchs W., Klupp B. G., Granzow H., Osterrieder N., Mettenleiter T. C. 2002; The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378 [View Article][PubMed]
    [Google Scholar]
  18. Graham T. R., Kozlov M. M. 2010; Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol 22:430–436 [View Article][PubMed]
    [Google Scholar]
  19. Granzow H., Klupp B. G., Fuchs W., Veits J., Osterrieder N., Mettenleiter T. C. 2001; Egress of alphaherpesviruses: comparative ultrastructural study. J Virol 75:3675–3684 [View Article][PubMed]
    [Google Scholar]
  20. Klupp B. G., Granzow H., Mettenleiter T. C. 2000; Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74:10063–10073 [View Article][PubMed]
    [Google Scholar]
  21. Klupp B. G., Granzow H., Fuchs W., Keil G. M., Finke S., Mettenleiter T. C. 2007; Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci U S A 104:7241–7246 [View Article][PubMed]
    [Google Scholar]
  22. Lake C. M., Hutt-Fletcher L. M. 2004; The Epstein–Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106 [View Article][PubMed]
    [Google Scholar]
  23. Leach N., Bjerke S. L., Christensen D. K., Bouchard J. M., Mou F., Park R., Baines J., Haraguchi T., Roller R. J. 2007; Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol 81:10792–10803 [View Article][PubMed]
    [Google Scholar]
  24. Lötzerich M., Ruzsics Z., Koszinowski U. H. 2006; Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80:73–84 [View Article][PubMed]
    [Google Scholar]
  25. Lundmark R., Carlsson S. R. 2010; Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Semin Cell Dev Biol 21:363–370 [View Article][PubMed]
    [Google Scholar]
  26. McMahon H. T., Gallop J. L. 2005; Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596 [View Article][PubMed]
    [Google Scholar]
  27. Mettenleiter T. C. 2004; Budding events in herpesvirus morphogenesis. Virus Res 106:167–180 [View Article][PubMed]
    [Google Scholar]
  28. Mettenleiter T. C., Klupp B. G., Granzow H. 2006; Herpesvirus assembly: a tale of two membranes. Curr Opin Microbiol 9:423–429 [View Article][PubMed]
    [Google Scholar]
  29. Mettenleiter T. C., Klupp B. G., Granzow H. 2009; Herpesvirus assembly: an update. Virus Res 143:222–234 [View Article][PubMed]
    [Google Scholar]
  30. Mou F., Wills E. G., Park R., Baines J. D. 2008; Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. J Virol 82:8094–8104 [View Article][PubMed]
    [Google Scholar]
  31. Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U. H. 2002; Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857 [View Article][PubMed]
    [Google Scholar]
  32. Nagel C. H., Döhner K., Fathollahy M., Strive T., Borst E. M., Messerle M., Sodeik B. 2008; Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence HSV1(17+). J Virol 82:3109–3124 [View Article][PubMed]
    [Google Scholar]
  33. Purves F. C., Spector D., Roizman B. 1992; UL34, the target of the herpes simplex virus U(S)3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J Virol 66:4295–4303[PubMed]
    [Google Scholar]
  34. Reynolds A. E., Ryckman B. J., Baines J. D., Zhou Y., Liang L., Roller R. J. 2001; U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817 [View Article][PubMed]
    [Google Scholar]
  35. Reynolds A. E., Liang L., Baines J. D. 2004; Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. J Virol 78:5564–5575 [View Article][PubMed]
    [Google Scholar]
  36. Roizman B., Knipe D. M., Whitley R. J. 2007; Herpes simplex viruses. In Fundamental Virology pp. 2502–2601 Edited by Howley P. M., Knipe D. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  37. Roller R. J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. 2000; Herpes simplex virus type 1 U(L)34 gene product is required for viral envelopment. J Virol 74:117–129 [View Article][PubMed]
    [Google Scholar]
  38. Roller R. J., Bjerke S. L., Haugo A. C., Hanson S. 2010; Analysis of a charge cluster mutation of herpes simplex virus type 1 UL34 and its extragenic suppressor suggests a novel interaction between pUL34 and pUL31 that is necessary for membrane curvature around capsids. J Virol 84:3921–3934 [View Article][PubMed]
    [Google Scholar]
  39. Santarelli R., Farina A., Granato M., Gonnella R., Raffa S., Leone L., Bei R., Modesti A., Frati L. et al. other authors 2008; Identification and characterization of the product encoded by ORF69 of Kaposi’s sarcoma-associated herpesvirus. J Virol 82:4562–4572 [View Article][PubMed]
    [Google Scholar]
  40. Sanyal S., Menon A. K. 2009; Flipping lipids: why an’ what’s the reason for?. ACS Chem Biol 4:895–909 [View Article][PubMed]
    [Google Scholar]
  41. Schmidt T., Striebinger H., Haas J., Bailer S. M. 2010; The heterogeneous nuclear ribonucleoprotein K is important for Herpes simplex virus-1 propagation. FEBS Lett 584:4361–4365 [View Article][PubMed]
    [Google Scholar]
  42. Schnee M., Ruzsics Z., Bubeck A., Koszinowski U. H. 2006; Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80:11658–11666 [View Article][PubMed]
    [Google Scholar]
  43. Shiba C., Daikoku T., Goshima F., Takakuwa H., Yamauchi Y., Koiwai O., Nishiyama Y. 2000; The UL34 gene product of herpes simplex virus type 2 is a tail-anchored type II membrane protein that is significant for virus envelopment. J Gen Virol 81:2397–2405[PubMed]
    [Google Scholar]
  44. Suetsugu S., Toyooka K., Senju Y. 2010; Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin Cell Dev Biol 21:340–349 [View Article][PubMed]
    [Google Scholar]
  45. Warming S., Costantino N., Court D. L., Jenkins N. A., Copeland N. G. 2005; Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36 [View Article][PubMed]
    [Google Scholar]
  46. Watts C., Wickner W., Zimmermann R. 1983; M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor mechanisms. Proc Natl Acad Sci U S A 80:2809–2813 [View Article][PubMed]
    [Google Scholar]
  47. Wheeler M. A., Ellis J. A. 2008; Molecular signatures of Emery-Dreifuss muscular dystrophy. Biochem Soc Trans 36:1354–1358 [View Article][PubMed]
    [Google Scholar]
  48. Wills E., Mou F., Baines J. D. 2009; The U(L)31 and U(L)34 gene products of herpes simplex virus 1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear membranes of infected cells. J Virol 83:4800–4809 [View Article][PubMed]
    [Google Scholar]
  49. Yamauchi Y., Shiba C., Goshima F., Nawa A., Murata T., Nishiyama Y. 2001; Herpes simplex virus type 2 UL34 protein requires UL31 protein for its relocation to the internal nuclear membrane in transfected cells. J Gen Virol 82:1423–1428[PubMed]
    [Google Scholar]
  50. Ye G. J., Roizman B. 2000; The essential protein encoded by the UL31 gene of herpes simplex virus 1 depends for its stability on the presence of UL34 protein. Proc Natl Acad Sci U S A 97:11002–11007 [View Article][PubMed]
    [Google Scholar]
  51. Zhu H. Y., Yamada H., Jiang Y. M., Yamada M., Nishiyama Y. 1999; Intracellular localization of the UL31 protein of herpes simplex virus type 2. Arch Virol 144:1923–1935 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.032730-0
Loading
/content/journal/jgv/10.1099/vir.0.032730-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error