1887

Abstract

The outer envelope of vaccinia virus extracellular virions is derived from intracellular membranes that, at late times in infection, are enriched in several virus-encoded proteins. Although palmitoylation is common in vaccinia virus envelope proteins, little is known about the role of palmitoylation in the biogenesis of the enveloped virus. We have studied the palmitoylation of B5, a 42 kDa type I transmembrane glycoprotein comprising a large ectodomain and a short (17 aa) cytoplasmic tail. Mutation of two cysteine residues located in the cytoplasmic tail in close proximity to the transmembrane domain abrogated palmitoylation of the protein. Virus mutants expressing non-palmitoylated versions of B5 and/or lacking most of the cytoplasmic tail were isolated and characterized. Cell-to-cell virus transmission and extracellular virus formation were only slightly affected by those mutations. Notably, B5 versions lacking palmitate showed decreased interactions with proteins A33 and F13, but were still incorporated into the virus envelope. Expression of mutated B5 by transfection into uninfected cells showed that both the cytoplasmic tail and palmitate have a role in the intracellular transport of B5. These results indicate that the C-terminal portion of protein B5, while involved in protein transport and in protein–protein interactions, is broadly dispensable for the formation and egress of infectious extracellular virus and for virus transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.039016-0
2012-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/733.html?itemId=/content/journal/jgv/10.1099/vir.0.039016-0&mimeType=html&fmt=ahah

References

  1. Bell E., Shamim M., Whitbeck J. C., Sfyroera G., Lambris J. D., Isaacs S. N. 2004; Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325:425–431 [View Article][PubMed]
    [Google Scholar]
  2. Benhnia M. R., McCausland M. M., Laudenslager J., Granger S. W., Rickert S., Koriazova L., Tahara T., Kubo R. T., Kato S., Crotty S. 2009; Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J Virol 83:12355–12367 [CrossRef]
    [Google Scholar]
  3. Blasco R., Moss B. 1991; Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J Virol 65:5910–5920[PubMed]
    [Google Scholar]
  4. Blasco R., Moss B. 1992; Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J Virol 66:4170–4179[PubMed]
    [Google Scholar]
  5. Borrego B., Lorenzo M. M., Blasco R. 1999; Complementation of P37 (F13L gene) knock-out in vaccinia virus by a cell line expressing the gene constitutively. J Gen Virol 80:425–432
    [Google Scholar]
  6. Boulter E. A., Appleyard G. 1973; Differences between extracellular and intracellular forms of poxvirus and their implications. Prog Med Virol 16:86–108
    [Google Scholar]
  7. Chan W. M., Ward B. M. 2010; There is an A33-dependent mechanism for the incorporation of B5–GFP into vaccinia virus extracellular enveloped virions. Virology 402:83–93 [View Article][PubMed]
    [Google Scholar]
  8. Chen Z., Earl P., Americo J., Damon I., Smith S. K., Zhou Y. H., Yu F., Sebrell A., Emerson S. other authors 2006; Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A 103:1882–1887 [CrossRef]
    [Google Scholar]
  9. Child S. J., Hruby D. E. 1992; Evidence for multiple species of vaccinia virus-encoded palmitylated proteins. Virology 191:262–271 [CrossRef]
    [Google Scholar]
  10. Dodding M. P., Newsome T. P., Collinson L. M., Edwards C., Way M. 2009; An E2–F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection. Cell Microbiol 11:808–824 [CrossRef]
    [Google Scholar]
  11. Duncan S. A., Smith G. L. 1992; Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J Virol 66:1610–1621[PubMed]
    [Google Scholar]
  12. Engelstad M., Smith G. L. 1993; The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627–637 [CrossRef]
    [Google Scholar]
  13. Engelstad M., Howard S. T., Smith G. L. 1992; A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801–810 [CrossRef]
    [Google Scholar]
  14. Grosenbach D. W., Hruby D. E. 1998; Biology of vaccinia virus acylproteins. Front Biosci 3:d354–d364
    [Google Scholar]
  15. Grosenbach D. W., Ulaeto D. O., Hruby D. E. 1997; Palmitylation of the vaccinia virus 37-kDa major envelope antigen. Identification of a conserved acceptor motif and biological relevance. J Biol Chem 272:1956–1964 [CrossRef]
    [Google Scholar]
  16. Grosenbach D. W., Hansen S. G., Hruby D. E. 2000; Identification and analysis of vaccinia virus palmitylproteins. Virology 275:193–206 [View Article][PubMed]
    [Google Scholar]
  17. Herrera E., Lorenzo M. M., Blasco R., Isaacs S. N. 1998; Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. J Virol 72:294–302
    [Google Scholar]
  18. Hirt P., Hiller G., Wittek R. 1986; Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J Virol 58:757–764[PubMed]
    [Google Scholar]
  19. Husain M., Moss B. 2001; Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 75:7528–7542 [CrossRef]
    [Google Scholar]
  20. Ichihashi Y., Dales S. 1971; Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology 46:533–543 [CrossRef]
    [Google Scholar]
  21. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B. 1992; Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66:7217–7224
    [Google Scholar]
  22. Katz E., Wolffe E., Moss B. 2002; Identification of second-site mutations that enhance release and spread of vaccinia virus. J Virol 76:11637–11644 [CrossRef]
    [Google Scholar]
  23. Krauss O., Hollinshead R., Hollinshead M., Smith G. L. 2002; An investigation of incorporation of cellular antigens into vaccinia virus particles. J Gen Virol 83:2347–2359
    [Google Scholar]
  24. Law M., Carter G. C., Roberts K. L., Hollinshead M., Smith G. L. 2006; Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103:5989–5994 [CrossRef]
    [Google Scholar]
  25. Lorenzo M. M., Herrera E., Blasco R., Isaacs S. N. 1998; Functional analysis of vaccinia virus B5R protein: role of the cytoplasmic tail. Virology 252:450–457 [CrossRef]
    [Google Scholar]
  26. Lorenzo M. M., Galindo I., Griffiths G., Blasco R. 2000; Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon. J Virol 74:10535–10550 [View Article][PubMed]
    [Google Scholar]
  27. Mathew E., Sanderson C. M., Hollinshead M., Smith G. L. 1998; The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. J Virol 72:2429–2438
    [Google Scholar]
  28. Mathew E. C., Sanderson C. M., Hollinshead R., Hollinshead M., Grimley R., Smith G. L. 1999; The effects of targeting the vaccinia virus B5R protein to the endoplasmic reticulum on virus morphogenesis and dissemination. Virology 265:131–146 [View Article][PubMed]
    [Google Scholar]
  29. Mathew E. C., Sanderson C. M., Hollinshead R., Smith G. L. 2001; A mutational analysis of the vaccinia virus B5R protein. J Gen Virol 82:1199–1213[PubMed]
    [Google Scholar]
  30. Moss B. 2007; Poxviridae: the viruses and their replication. In Fields Virology, 5th edn. pp. 2905–2946 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  31. Newsome T. P., Scaplehorn N., Way M. 2004; SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306:124–129 [CrossRef]
    [Google Scholar]
  32. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a M r 43–50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [CrossRef]
    [Google Scholar]
  33. Payne L. G. 1979; Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J Virol 31:147–155
    [Google Scholar]
  34. Payne L. G. 1980; Significance of extracellular enveloped virus in the in vitro and in vitro dissemination of vaccinia. J Gen Virol 50:89–100 [CrossRef]
    [Google Scholar]
  35. Perdiguero B., Blasco R. 2006; Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J Virol 80:8763–8777 [View Article][PubMed]
    [Google Scholar]
  36. Perdiguero B., Lorenzo M. M., Blasco R. 2008; Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. J Virol 82:2150–2160 [View Article][PubMed]
    [Google Scholar]
  37. Pütz M. M., Midgley C. M., Law M., Smith G. L. 2006; Quantification of antibody responses against multiple antigens of the two infectious forms of vaccinia virus provides a benchmark for smallpox vaccination. Nat Med 12:1310–1315 [View Article][PubMed]
    [Google Scholar]
  38. Ren J., Wen L., Gao X., Jin C., Xue Y., Yao X. 2008; CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644 [View Article][PubMed]
    [Google Scholar]
  39. Rodger G., Smith G. L. 2002; Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J Gen Virol 83:323–332[PubMed]
    [Google Scholar]
  40. Roberts K. L., Smith G. L. 2008; Vaccinia virus morphogenesis and dissemination. Trends Microbiol 16:472–479 [CrossRef]
    [Google Scholar]
  41. Roberts K. L., Breiman A., Carter G. C., Ewles H. A., Hollinshead M., Law M., Smith G. L. 2009; Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. J Gen Virol 90:1582–1591 [CrossRef]
    [Google Scholar]
  42. Roper R. L., Payne L. G., Moss B. 1996; Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol 70:3753–3762[PubMed]
    [Google Scholar]
  43. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G. 1994; Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68:130–147
    [Google Scholar]
  44. Schmutz C., Rindisbacher L., Galmiche M. C., Wittek R. 1995; Biochemical analysis of the major vaccinia virus envelope antigen. Virology 213:19–27 [CrossRef]
    [Google Scholar]
  45. Shida H. 1986; Variants of vaccinia virus hemagglutinin altered in intracellular transport. Mol Cell Biol 6:3734–3745[PubMed]
    [Google Scholar]
  46. Smith G. L., Law M. 2004; The exit of vaccinia virus from infected cells. Virus Res 106:189–197 [CrossRef]
    [Google Scholar]
  47. Smith G. L., Vanderplasschen A., Law M. 2002; The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915–2931[PubMed]
    [Google Scholar]
  48. Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M. 1991; Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181:158–164 [CrossRef]
    [Google Scholar]
  49. Tooze J., Hollinshead M., Reis B., Radsak K., Kern H. 1993; Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur J Cell Biol 60:163–178[PubMed]
    [Google Scholar]
  50. van Eijl H., Hollinshead M., Smith G. L. 2000; The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271:26–36 [CrossRef]
    [Google Scholar]
  51. van Eijl H., Hollinshead M., Rodger G., Zhang W. H., Smith G. L. 2002; The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol 83:195–207[PubMed]
    [Google Scholar]
  52. Wang X. B., Wu L. Y., Wang Y. C., Deng N. Y. 2009; Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel 22:707–712 [View Article][PubMed]
    [Google Scholar]
  53. Ward B. M., Moss B. 2000; Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J Virol 74:3771–3780 [View Article][PubMed]
    [Google Scholar]
  54. Wolffe E. J., Isaacs S. N., Moss B. 1993; Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J Virol 67:4732–4741[PubMed]
    [Google Scholar]
  55. Zhang W. H., Wilcock D., Smith G. L. 2000; Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J Virol 74:11654–11662 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.039016-0
Loading
/content/journal/jgv/10.1099/vir.0.039016-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error