1887

Abstract

Vesicular stomatitis virus (VSV) matrix protein (M) has a flexible amino-terminal part that recruits cellular partners. It contains a dynamin-binding site that is required for efficient virus assembly, and two motifs, PPPY and PSAP, that constitute potential late domains. Late domains are present in proteins of several enveloped viruses and are involved in the ultimate step of the budding process (i.e. fission between viral and cellular membranes). In baby hamster kidney (BHK)-21 cells, it has been demonstrated that the PPPY motif binds the Nedd4 (neuronal precursor cell-expressed developmentally downregulated 4) E3 ubiquitin ligase for efficient virus budding and that the PSAP motif, although conserved among M proteins of vesiculoviruses, does not possess late-domain activity. In this study, we have re-examined the contribution of the PSAP motif to VSV budding. First, we demonstrate that VSV M indeed binds TSG101 [tumour susceptibility gene 101; a component of the ESCRT1 (endosomal sorting complex required for transport 1)] through its PSAP motif. Second, we analysed the phenotype of several recombinant mutants. We show that a double mutant with point mutations in both the PSAP and the PPPY motifs is impaired compared with a single mutant in the PPPY motif, indicating that the PSAP motif partially compensates for the lack of the PPPY motif. Mutants’ phenotypes depend on cell lines: in CERA (chicken embryo-related, Alger clone) cells, a recombinant virus with a single mutation in the PSAP motif was impaired compared with the wild type, and a mutant with a single mutation in the dynamin-binding motif was much less impaired in Vero cells than in BSR (clones of BHK-21) cells. These results have implications for the VSV budding pathway that will be discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.039800-0
2012-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/4/857.html?itemId=/content/journal/jgv/10.1099/vir.0.039800-0&mimeType=html&fmt=ahah

References

  1. Barge A., Gaudin Y., Coulon P., Ruigrok R. W. 1993; Vesicular stomatitis virus M protein may be inside the ribonucleocapsid coil. J Virol 67:7246–7253[PubMed]
    [Google Scholar]
  2. Bergmann J. E., Fusco P. J. 1988; The M protein of vesicular stomatitis virus associates specifically with the basolateral membranes of polarized epithelial cells independently of the G protein. J Cell Biol 107:1707–1715 [View Article][PubMed]
    [Google Scholar]
  3. Brun G., Bao X., Prevec L. 1995; The relationship of Piry virus to other vesiculoviruses: a re-evaluation based on the glycoprotein gene sequence. Intervirology 38:274–282[PubMed]
    [Google Scholar]
  4. Chong L. D., Rose J. K. 1993; Membrane association of functional vesicular stomatitis virus matrix protein in vivo . J Virol 67:407–414[PubMed]
    [Google Scholar]
  5. Craven R. C., Harty R. N., Paragas J., Palese P., Wills J. W. 1999; Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 73:3359–3365[PubMed]
    [Google Scholar]
  6. Dancho B., McKenzie M. O., Connor J. H., Lyles D. S. 2009; Vesicular stomatitis virus matrix protein mutations that affect association with host membranes and viral nucleocapsids. J Biol Chem 284:4500–4509 [View Article][PubMed]
    [Google Scholar]
  7. Demirov D. G., Orenstein J. M., Freed E. O. 2002; The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 76:105–117 [View Article][PubMed]
    [Google Scholar]
  8. Flood E. A., Lyles D. S. 1999; Assembly of nucleocapsids with cytosolic and membrane-derived matrix proteins of vesicular stomatitis virus. Virology 261:295–308 [View Article][PubMed]
    [Google Scholar]
  9. Garrus J. E., von Schwedler U. K., Pornillos O. W., Morham S. G., Zavitz K. H., Wang H. E., Wettstein D. A., Stray K. M., Côté M. other authors 2001; Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65 [View Article][PubMed]
    [Google Scholar]
  10. Gaudier M., Gaudin Y., Knossow M. 2002; Crystal structure of vesicular stomatitis virus matrix protein. EMBO J 21:2886–2892 [View Article][PubMed]
    [Google Scholar]
  11. Gaudin Y., Barge A., Ebel C., Ruigrok R. W. 1995; Aggregation of VSV M protein is reversible and mediated by nucleation sites: implications for viral assembly. Virology 206:28–37 [View Article][PubMed]
    [Google Scholar]
  12. Gaudin Y., Sturgis J., Doumith M., Barge A., Robert B., Ruigrok R. W. 1997; Conformational flexibility and polymerization of vesicular stomatitis virus matrix protein. J Mol Biol 274:816–825 [View Article][PubMed]
    [Google Scholar]
  13. Ge P., Tsao J., Schein S., Green T. J., Luo M., Zhou Z. H. 2010; Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 327:689–693 [View Article][PubMed]
    [Google Scholar]
  14. Göttlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. 1991; Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88:3195–3199 [View Article][PubMed]
    [Google Scholar]
  15. Graham S. C., Assenberg R., Delmas O., Verma A., Gholami A., Talbi C., Owens R. J., Stuart D. I., Grimes J. M., Bourhy H. 2008; Rhabdovirus matrix protein structures reveal a novel mode of self-association. PLoS Pathog 4:e1000251 [View Article][PubMed]
    [Google Scholar]
  16. Grigorov B., Rabilloud J., Lawrence P., Gerlier D. 2011; Rapid titration of measles and other viruses: optimization with determination of replication cycle length. PLoS One 6:e24135 [View Article][PubMed]
    [Google Scholar]
  17. Hackett A. J., Zee Y. C., Schaffer F. L., Talens L. 1968; Electron microscopic study of the morphogenesis of vesicular stomatitis virus. J Virol 2:1154–1162[PubMed]
    [Google Scholar]
  18. Harty R. N., Paragas J., Sudol M., Palese P. 1999; A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929[PubMed]
    [Google Scholar]
  19. Harty R. N., Brown M. E., McGettigan J. P., Wang G., Jayakar H. R., Huibregtse J. M., Whitt M. A., Schnell M. J. 2001; Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. J Virol 75:10623–10629 [View Article][PubMed]
    [Google Scholar]
  20. Irie T., Harty R. N. 2005; L-domain flanking sequences are important for host interactions and efficient budding of vesicular stomatitis virus recombinants. J Virol 79:12617–12622 [View Article][PubMed]
    [Google Scholar]
  21. Irie T., Licata J. M., Jayakar H. R., Whitt M. A., Bell P., Harty R. N. 2004; Functional analysis of late-budding domain activity associated with the PSAP motif within the vesicular stomatitis virus M protein. J Virol 78:7823–7827 [View Article][PubMed]
    [Google Scholar]
  22. Jayakar H. R., Murti K. G., Whitt M. A. 2000; Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74:9818–9827 [View Article][PubMed]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481 [View Article][PubMed]
    [Google Scholar]
  25. Libersou S., Albertini A. A., Ouldali M., Maury V., Maheu C., Raux H., de Haas F., Roche S., Gaudin Y., Lepault J. 2010; Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion. J Cell Biol 191:199–210 [View Article][PubMed]
    [Google Scholar]
  26. Luan P., Glaser M. 1994; Formation of membrane domains by the envelope proteins of vesicular stomatitis virus. Biochemistry 33:4483–4489 [View Article][PubMed]
    [Google Scholar]
  27. Luan P., Yang L., Glaser M. 1995; Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes. Biochemistry 34:9874–9883 [View Article][PubMed]
    [Google Scholar]
  28. Lyles D. S., McKenzie M. O., Hantgan R. R. 1996; Stopped-flow, classical, and dynamic light scattering analysis of matrix protein binding to nucleocapsids of vesicular stomatitis virus. Biochemistry 35:6508–6518 [View Article][PubMed]
    [Google Scholar]
  29. Marriott A. C. 2005; Complete genome sequences of Chandipura and Isfahan vesiculoviruses. Arch Virol 150:671–680 [View Article][PubMed]
    [Google Scholar]
  30. McCreedy B. J. Jr, McKinnon K. P., Lyles D. S. 1990; Solubility of vesicular stomatitis virus M protein in the cytosol of infected cells or isolated from virions. J Virol 64:902–906[PubMed]
    [Google Scholar]
  31. Pauszek S. J., Allende R., Rodriguez L. L. 2008; Characterization of the full-length genomic sequences of vesicular stomatitis Cocal and Alagoas viruses. Arch Virol 153:1353–1357 [View Article][PubMed]
    [Google Scholar]
  32. Raux H., Obiang L., Richard N., Harper F., Blondel D., Gaudin Y. 2010; The matrix protein of vesicular stomatitis virus binds dynamin for efficient viral assembly. J Virol 84:12609–12618 [View Article][PubMed]
    [Google Scholar]
  33. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365 [CrossRef]
    [Google Scholar]
  34. Solon J., Gareil O., Bassereau P., Gaudin Y. 2005; Membrane deformations induced by the matrix protein of vesicular stomatitis virus in a minimal system. J Gen Virol 86:3357–3363 [View Article][PubMed]
    [Google Scholar]
  35. Timmins J., Schoehn G., Ricard-Blum S., Scianimanico S., Vernet T., Ruigrok R. W., Weissenhorn W. 2003; Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326:493–502 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.039800-0
Loading
/content/journal/jgv/10.1099/vir.0.039800-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error