1887

Abstract

The multifunctional protein kinase pUL97 of human cytomegalovirus (HCMV) strongly determines the efficiency of virus replication. Previously, the existence of two pUL97 isoforms that arise from alternative translational initiation and show a predominant nuclear localization was described. Two bipartite nuclear localization sequences, NLS1 and NLS2, were identified in the N terminus of the large isoform, whilst the small isoform exclusively contained NLS2. The current study found the following: (i) pUL97 nuclear localization in HCMV-infected primary fibroblasts showed accumulations in virus replication centres and other nuclear sections; (ii) in a quantitative evaluation system for NLS activity, the large isoform showed higher efficiency of nuclear translocation than the small isoform; (iii) NLS1 was mapped to aa 6–35 and NLS2 to aa 190–213; (iv) using surface plasmon resonance spectroscopy, the binding of both NLS1 and NLS2 to human importin-α was demonstrated, stressing the importance of individual arginine residues in the bipartite consensus motifs; (v) nuclear magnetic resonance spectroscopy of pUL97 peptides confirmed an earlier statement about the functional requirement of NLS1 embedding into an intact α-helical structure; and (vi) a bioinformatics investigation of the solvent-accessible surface suggested a high accessibility of NLS1 and an isoform-specific, variable accessibility of NLS2 for interaction with importin-α. Thus, the nucleocytoplasmic transport mechanism of the isoforms appeared to be differentially regulated, and this may have consequences for isoform-dependent functions of pUL97 during virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.040592-0
2012-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/8/1756.html?itemId=/content/journal/jgv/10.1099/vir.0.040592-0&mimeType=html&fmt=ahah

References

  1. Adler S. P., Nigro G., Pereira L. 2007; Recent advances in the prevention and treatment of congenital cytomegalovirus infections. Semin Perinatol 31:10–18 [View Article][PubMed]
    [Google Scholar]
  2. Alvisi G., Rawlinson S. M., Ghildyal R., Ripalti A., Jans D. A. 2008; Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target?. Biochim Biophys Acta 1784:213–227[PubMed] [CrossRef]
    [Google Scholar]
  3. Biron K. K., Harvey R. J., Chamberlain S. C., Good S. S., Smith A. A. III, Davis M. G., Talarico C. L., Miller W. H., Ferris R. other authors 2002; Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action. Antimicrob Agents Chemother 46:2365–2372 [View Article][PubMed]
    [Google Scholar]
  4. Case D. A., Darden T. A., Cheatham T. E. III, Simmerling C. L., Wang J., Duke R. E., Luo R., Walker R. C., Zhang W. other authors 2010) AMBER11 San Francisco, USA: University California;
    [Google Scholar]
  5. Cingolani G., Petosa C., Weis K., Müller C. W. 1999; Structure of importin-β bound to the IBB domain of importin-α. Nature 399:221–229 [View Article][PubMed]
    [Google Scholar]
  6. Efferth T., Marschall M., Wang X., Huong S. M., Hauber I., Olbrich A., Kronschnabl M., Stamminger T., Huang E. S. 2002; Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med (Berl) 80:233–242 [View Article][PubMed]
    [Google Scholar]
  7. Fontes M. R., Teh T., Jans D., Brinkworth R. I., Kobe B. 2003; Structural basis for the specificity of bipartite nuclear localization sequence. Binding by importin-α. J Biol Chem 278:27981–27987 [View Article][PubMed]
    [Google Scholar]
  8. Franke R., Hirsch T., Overwin H., Eichler J. 2007; Synthetic mimetics of the CD4 binding site of HIV-1 gp120 for the design of immunogens. Angew Chem Int Ed Engl 46:1253–1255 [View Article][PubMed]
    [Google Scholar]
  9. Friedler A., Friedler D., Luedtke N. W., Tor Y., Loyter A., Gilon C. 2000; Development of a functional backbone cyclic mimetic of the HIV-1 Tat arginine-rich motif. J Biol Chem 275:23783–23789 [View Article][PubMed]
    [Google Scholar]
  10. Goldberg M. D., Honigman A., Weinstein J., Chou S., Taraboulos A., Rouvinski A., Shinder V., Wolf D. G. 2011; Human cytomegalovirus UL97 kinase and nonkinase functions mediate viral cytoplasmic secondary envelopment. J Virol 85:3375–3384 [View Article][PubMed]
    [Google Scholar]
  11. Görlich D. 1998; Transport into and out of the cell nucleus. EMBO J 17:2721–2727 [View Article][PubMed]
    [Google Scholar]
  12. Held C., Wenzel J., Webel R., Marschall M., Lang R., Palmisano R., Wittenberg T. 2011; Using multimodal information for the segmentation of fluorescent micrographs with application to virology and microbiology. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC pp. 6487–6490 [CrossRef]
    [Google Scholar]
  13. Herget T., Freitag M., Morbitzer M., Kupfer R., Stamminger T., Marschall M. 2004; Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob Agents Chemother 48:4154–4162 [View Article][PubMed]
    [Google Scholar]
  14. Hertel L., Chou S., Mocarski E. S. 2007; Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog 3:e6 [View Article][PubMed]
    [Google Scholar]
  15. Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. 2006; Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf 65:712–725 [CrossRef]
    [Google Scholar]
  16. Humphrey W., Dalke A., Schulten K. 1996; vmd: visual molecular dynamics. J Mol Graph 14:33–38, 27–28 [View Article][PubMed]
    [Google Scholar]
  17. Kabsch W., Sander C. 1983; Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637 [View Article][PubMed]
    [Google Scholar]
  18. Kosugi S., Hasebe M., Tomita M., Yanagawa H. 2009; Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106:10171–10176 [View Article][PubMed]
    [Google Scholar]
  19. Lee C.-P., Chen M.-R. 2010; Escape of herpesviruses from the nucleus. Rev Med Virol 20:214–230 [View Article][PubMed]
    [Google Scholar]
  20. Marfori M., Mynott A., Ellis J. J., Mehdi A. M., Saunders N. F., Curmi P. M., Forwood J. K., Bodén M., Kobe B. 2011; Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 1813:1562–1577 [View Article][PubMed]
    [Google Scholar]
  21. Marschall M., Freitag M., Weiler S., Sorg G., Stamminger T. 2000; Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother 44:1588–1597 [View Article][PubMed]
    [Google Scholar]
  22. Marschall M., Stein-Gerlach M., Freitag M., Kupfer R., van Den Bogaard M., Stamminger T. 2001; Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 82:1439–1450[PubMed]
    [Google Scholar]
  23. Marschall M., Stein-Gerlach M., Freitag M., Kupfer R., van den Bogaard M., Stamminger T. 2002; Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy. J Gen Virol 83:1013–1023[PubMed]
    [Google Scholar]
  24. Marschall M., Freitag M., Suchy P., Romaker D., Kupfer R., Hanke M., Stamminger T. 2003; The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology 311:60–71 [View Article][PubMed]
    [Google Scholar]
  25. Marschall M., Feichtinger S., Milbradt J. 2011; Regulatory roles of protein kinases in cytomegalovirus replication. Adv Virus Res 80:69–101 [View Article][PubMed]
    [Google Scholar]
  26. Milbradt J., Auerochs S., Sticht H., Marschall M. 2009; Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. J Gen Virol 90:579–590 [View Article][PubMed]
    [Google Scholar]
  27. Milbradt J., Webel R., Auerochs S., Sticht H., Marschall M. 2010; Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem 285:13979–13989 [View Article][PubMed]
    [Google Scholar]
  28. Mocarski E. S., Shenk T., Pass R. F. 2007; Cytomegaloviruses. In Fields Virology, 5th edn. pp. 2701–2772 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus & S. E. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  29. Onufriev A., Bashford D., Case D. A. 2004; Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394 [View Article][PubMed]
    [Google Scholar]
  30. Prichard M. N. 2009; Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 19:215–229 [View Article][PubMed]
    [Google Scholar]
  31. Prichard M. N., Gao N., Jairath S., Mulamba G., Krosky P., Coen D. M., Parker B. O., Pari G. S. 1999; A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. J Virol 73:5663–5670[PubMed]
    [Google Scholar]
  32. Rich R. L., Myszka D. G. 2010; Grading the commercial optical biosensor literature – Class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64 [View Article][PubMed]
    [Google Scholar]
  33. Schölkopf B., Burges J. C., Smola A. J. 1999 Advances in Kernel Methods: Support Vector Learning Cambridge, MA: MIT Press;
    [Google Scholar]
  34. Schregel V., Auerochs S., Jochmann R., Maurer K., Stamminger T., Marschall M. 2007; Mapping of a self-interaction domain of the cytomegalovirus protein kinase pUL97. J Gen Virol 88:395–404 [View Article][PubMed]
    [Google Scholar]
  35. Simmerling C., Strockbine B., Roitberg A. E. 2002; All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 124:11258–11259 [View Article][PubMed]
    [Google Scholar]
  36. Sorg G., Stamminger T. 1999; Mapping of nuclear localization signals by simultaneous fusion to green fluorescent protein and to β-galactosidase. Biotechniques 26:858–862[PubMed]
    [Google Scholar]
  37. Thomas M., Rechter S., Milbradt J., Auerochs S., Müller R., Stamminger T., Marschall M. 2009; Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. J Gen Virol 90:567–578 [View Article][PubMed]
    [Google Scholar]
  38. Webel R., Milbradt J., Auerochs S., Schregel V., Held C., Nöbauer K., Razzazi-Fazeli E., Jardin C., Wittenberg T. other authors 2011; Two isoforms of the protein kinase pUL97 of human cytomegalovirus are differentially regulated in their nuclear translocation. J Gen Virol 92:638–649 [View Article][PubMed]
    [Google Scholar]
  39. Wishart D. S., Sykes B. D., Richards F. M. 1992; The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651 [View Article][PubMed]
    [Google Scholar]
  40. Wolf D. G., Courcelle C. T., Prichard M. N., Mocarski E. S. 2001; Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc Natl Acad Sci U S A 98:1895–1900 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.040592-0
Loading
/content/journal/jgv/10.1099/vir.0.040592-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error