1887

Abstract

Duck egg-drop syndrome virus (DEDSV) is a newly emerging pathogenic flavivirus causing avian diseases in China. The infection occurs in laying ducks characterized by a severe drop in egg production with a fatality rate of 5–15 %. The virus was found to be most closely related to Tembusu virus (TMUV), an isolate from mosquitoes in South-east Asia. Here, we have sequenced and characterized the full-length genomes of seven DEDSV strains, including the 5′- and 3′-non-coding regions (NCRs). We also report for the first time the ORF sequences of TMUV and Sitiawan virus (STWV), another closely related flavivirus isolated from diseased chickens. We analysed the phylogenetic and antigenic relationships of DEDSV in relation to the Asian viruses TMUV and STWV, and other representative flaviviruses. Our results confirm the close relationship between DEDSV and TMUV/STWV and we discuss their probable evolutionary origins. We have also characterized the cleavage sites, potential glycosylation sites and unique motifs/modules of these viruses. Additionally, conserved sequences in both 5′- and 3′-NCRs were identified and the predicted secondary structures of the terminal sequences were studied. Antigenic cross-reactivity comparisons of DEDSV with related pathogenic flaviviruses identified a surprisingly close relationship with dengue virus (DENV) and raised the question of whether or not DEDSV may have a potential infectious threat to man. Importantly, DEDSV can be efficiently recognized by a broadly cross-reactive flavivirus mAb, 2A10G6, derived against DENV. The significance of these studies is discussed in the context of the emergence, evolution, epidemiology, antigenicity and pathogenicity of the newly emergent DEDSV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043554-0
2012-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2158.html?itemId=/content/journal/jgv/10.1099/vir.0.043554-0&mimeType=html&fmt=ahah

References

  1. Agüero M., Fernández-Pinero J., Buitrago D., Sánchez A., Elizalde M., San Miguel E., Villalba R., Llorente F., Jiménez-Clavero M. A. 2011; Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis 17:1498–1501[PubMed]
    [Google Scholar]
  2. Alvarez D. E., De Lella Ezcurra A. L., Fucito S., Gamarnik A. V. 2005; Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339:200–212 [View Article][PubMed]
    [Google Scholar]
  3. Bakonyi T., Gould E. A., Kolodziejek J., Weissenböck H., Nowotny N. 2004; Complete genome analysis and molecular characterization of Usutu virus that emerged in Austria in 2001: comparison with the South African strain SAAR-1776 and other flaviviruses. Virology 328:301–310 [View Article][PubMed]
    [Google Scholar]
  4. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [View Article][PubMed]
    [Google Scholar]
  5. Berge T. O. 1975 International Catalogue Of Arboviruses, 2nd edn. pp. 138–139, 200–201, 348–349, 402–403, 416–417, 532–533, 586–587, 688–689 U.S. Department Of Health, Education and Welfare;
    [Google Scholar]
  6. Brinton M. A., Fernandez A. V., Dispoto J. H. 1986; The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121 [View Article][PubMed]
    [Google Scholar]
  7. Cao Z., Zhang C., Liu Y., Liu Y., Ye W., Han J., Ma G., Zhang D., Xu F. other authors 2011; Tembusu virus in ducks, China. Emerg Infect Dis 17:1873–1875[PubMed] [CrossRef]
    [Google Scholar]
  8. Castle E., Nowak T., Leidner U., Wengler G., Wengler G. 1985; Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236 [View Article][PubMed]
    [Google Scholar]
  9. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [View Article][PubMed]
    [Google Scholar]
  10. Ciota A. T., Lovelace A. O., Ngo K. A., Le A. N., Maffei J. G., Franke M. A., Payne A. F., Jones S. A., Kauffman E. B., Kramer L. D. 2007; Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology 357:165–174 [View Article][PubMed]
    [Google Scholar]
  11. Coia G., Parker M. D., Speight G., Byrne M. E., Westaway E. G. 1988; Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol 69:1–21 [View Article][PubMed]
    [Google Scholar]
  12. Cook S., Moureau G., Kitchen A., Gould E. A., de Lamballerie X., Holmes E. C., Harbach R. E. 2012; Molecular evolution of the insect-specific flaviviruses. J Gen Virol 93:223–234 [View Article][PubMed]
    [Google Scholar]
  13. Crabtree M. B., Kinney R. M., Miller B. R. 2005; Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150:771–786 [View Article][PubMed]
    [Google Scholar]
  14. Deng Y. Q., Dai J. X., Ji G. H., Jiang T., Wang H. J., Yang H. O., Tan W. L., Liu R., Yu M. other authors 2011; A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS ONE 6:e16059 [View Article][PubMed]
    [Google Scholar]
  15. Digoutte J. P. 1978; Bagaza (BAG). Am J Trop Med Hyg 27:376–377
    [Google Scholar]
  16. Dong H., Ray D., Ren S., Zhang B., Puig-Basagoiti F., Takagi Y., Ho C. K., Li H., Shi P. Y. 2007; Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81:4412–4421 [View Article][PubMed]
    [Google Scholar]
  17. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  18. Freeman J. D., Warren R. L., Webb J. R., Nelson B. H., Holt R. A. 2009; Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19:1817–1824 [View Article][PubMed]
    [Google Scholar]
  19. Galler R., Post P. R., Santos C. N. D., Ferreira I. I. 1998; Genetic variability among yellow fever virus 17D substrains. Vaccine 16:1024–1028 [View Article][PubMed]
    [Google Scholar]
  20. Gao G. F., Hussain M. H., Reid H. W., Gould E. A. 1993; Classification of a new member of the TBE flavivirus subgroup by its immunological, pathogenetic and molecular characteristics: identification of subgroup-specific pentapeptides. Virus Res 30:129–144 [View Article][PubMed]
    [Google Scholar]
  21. Gaunt M. W., Sall A. A., de Lamballerie X., Falconar A. K. I., Dzhivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876[PubMed]
    [Google Scholar]
  22. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730 [View Article][PubMed]
    [Google Scholar]
  23. Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I. 2005; Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine 23:3043–3052 [View Article][PubMed]
    [Google Scholar]
  24. Gould E. A., Solomon T. 2008; Pathogenic flaviviruses. Lancet 371:500–509 [View Article][PubMed]
    [Google Scholar]
  25. Gould E. A., de Lamballerie X., Zanotto P. M. A., Holmes E. C. 2003; Origins, evolution, and vector/host coadaptations within the genus Flavivirus . In Advances in Virus Research pp. 277–314 San Diego, USA: Academic Press; [View Article]
    [Google Scholar]
  26. Grard G., Moureau G., Charrel R. N., Lemasson J.-J., Gonzalez J.-P., Gallian P., Gritsun T. S., Holmes E. C., Gould E. A., de Lamballerie X. 2007; Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361:80–92 [View Article][PubMed]
    [Google Scholar]
  27. Gritsun T. S., Tuplin A., Gould E. A. 2006; Origin, evolution and function of flavivirus RNA in untranslated and coding regions: implications for virus transmission. In Molecular Biology of Flavivirus pp. 48–100 Edited by Kalitsky M., Borowski P. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  28. Guy J. S., Malkinson M. 2008; Arbovirus infections. In Diseases of Poultry, 12 edn. p. 12 Edited by Saif Y. M. Ames: Blackwell Publishing;
    [Google Scholar]
  29. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [View Article][PubMed]
    [Google Scholar]
  30. Hashimoto H., Nomoto A., Watanabe K., Mori T., Takezawa T., Aizawa C., Takegami T., Hiramatsu K. 1988; Molecular cloning and complete nucleotide sequence of the genome of Japanese encephalitis virus Beijing-1 strain. Virus Genes 1:305–317 [View Article][PubMed]
    [Google Scholar]
  31. Hu X., Lu H., Liu P., Yu X., Li S., Wang Y., Mo Y., Zhang G., Tian K. other authors 2011; Characterization of a newly-emerged flavivirus causing duck egg drop syndrome in China. Chin J Vet Med 47:43–46 (In Chinese)
    [Google Scholar]
  32. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  33. Hurrelbrink R. J., Nestorowicz A., McMinn P. C. 1999; Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J Gen Virol 80:3115–3125[PubMed]
    [Google Scholar]
  34. Institute for Medical Research Federation of Malaya 1957 Annual Report pp. 100–103 Edited by the Institute for Medical Research Kuala Lumpur: United States Army Medical Research Unit (Malaya);
    [Google Scholar]
  35. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728 [View Article][PubMed]
    [Google Scholar]
  36. Kono Y., Tsukamoto K., Abd Hamid M., Darus A., Lian T. C., Sam L. S., Yok C. N., Di K. B., Lim K. T. other authors 2000; Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus . Am J Trop Med Hyg 63:94–101[PubMed]
    [Google Scholar]
  37. Kuno G., Chang G. J. 2005; Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637 [View Article][PubMed]
    [Google Scholar]
  38. Kuno G., Chang G. J. 2007; Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol 152:687–696 [View Article][PubMed]
    [Google Scholar]
  39. Li J., Bhuvanakantham R., Howe J., Ng M. L. 2006; The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. J Gen Virol 87:613–622 [View Article][PubMed]
    [Google Scholar]
  40. Li X. F., Jiang T., Yu X. D., Deng Y. Q., Zhao H., Zhu Q. Y., Qin E. D., Qin C. F. 2010; RNA elements within the 5′ untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. J Gen Virol 91:1218–1223 [View Article][PubMed]
    [Google Scholar]
  41. Lindenbach B. D., Rice C. M. 2003; Molecular biology of flaviviruses. In Advances in Virus Research pp. 23–61 San Diego, USA: Academic Press;
    [Google Scholar]
  42. Liu R., Yue L., Li X., Yu X., Zhao H., Jiang Z., Qin E., Qin C. 2010; Identification and characterization of small sub-genomic RNAs in dengue 1-4 virus-infected cell cultures and tissues. Biochem Biophys Res Commun 391:1099–1103 [View Article][PubMed]
    [Google Scholar]
  43. Liu M., Liu C., Li G., Li X., Yin X., Chen Y., Zhang Y. 2012; Complete genomic sequence of duck flavivirus from China. J Virol 86:3398–3399 [View Article][PubMed]
    [Google Scholar]
  44. May F. J., Lobigs M., Lee E., Gendle D. J., Mackenzie J. S., Broom A. K., Conlan J. V., Hall R. A. 2006; Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. J Gen Virol 87:329–337 [View Article][PubMed]
    [Google Scholar]
  45. Medeiros D. B., Nunes M. R., Vasconcelos P. F., Chang G. J., Kuno G. 2007; Complete genome characterization of Rocio virus (Flavivirus: Flaviviridae), a Brazilian flavivirus isolated from a fatal case of encephalitis during an epidemic in Sao Paulo state. J Gen Virol 88:2237–2246 [View Article][PubMed]
    [Google Scholar]
  46. Modis Y., Ogata S., Clements D., Harrison S. C. 2004; Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319 [View Article][PubMed]
    [Google Scholar]
  47. Porterfield J. S. 1980; Antigenic characteristics and classification of Togaviridae. In The Togaviruses pp. 13–46 Edited by Schlesinger R. W. New York: Academic Press; [CrossRef]
    [Google Scholar]
  48. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  49. Proutski V., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202 [View Article][PubMed]
    [Google Scholar]
  50. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733 [View Article][PubMed]
    [Google Scholar]
  51. Shope S. E. 2003; Epidemiology of other arthropod-borne flaviviruses infecting humans. In Advances in Virus Research pp. 373–391 San Diego, USA: Academic Press;
    [Google Scholar]
  52. Si B. Y., Jiang T., Zhang Y., Deng Y. Q., Huo Q. B., Zheng Y. C., Qin E. D., Qin C. F., Zhu Q. Y. 2011; Complete genome sequence analysis of tick-borne encephalitis viruses isolated in northeastern China. Arch Virol 156:1485–1488 [View Article][PubMed]
    [Google Scholar]
  53. Su J., Li S., Hu X., Yu X., Wang Y., Liu P., Lu X., Zhang G., Hu X. other authors 2011; Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS ONE 6:e18106 [View Article][PubMed]
    [Google Scholar]
  54. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510 [View Article][PubMed]
    [Google Scholar]
  55. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  56. Traore-Lamizana M., Zeller H. G., Mondo M., Hervy J. P., Adam F., Digoutte J. P. 1994; Isolations of West Nile and Bagaza viruses from mosquitoes (Diptera: Culicidae) in central Senegal (Ferlo). J Med Entomol 31:934–938[PubMed] [CrossRef]
    [Google Scholar]
  57. Valle R. P. C., Falgout B. 1998; Mutagenesis of the NS3 protease of dengue virus type 2. J Virol 72:624–632[PubMed]
    [Google Scholar]
  58. Villordo S. M., Gamarnik A. V. 2009; Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139:230–239 [View Article][PubMed]
    [Google Scholar]
  59. Weissenböck H., Hubálek Z., Bakonyi T., Nowotny N. 2010; Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet Microbiol 140:271–280 [View Article][PubMed]
    [Google Scholar]
  60. Wengler G., Castle E. 1986; Analysis of structural properties which possibly are characteristic for the 3′-terminal sequence of the genome RNA of flaviviruses. J Gen Virol 67:1183–1188 [View Article][PubMed]
    [Google Scholar]
  61. Winkler G., Heinz F. X., Kunz C. 1987; Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. Virology 159:237–243 [View Article][PubMed]
    [Google Scholar]
  62. Yan P., Zhao Y., Zhang X., Xu D., Dai X., Teng Q., Yan L., Zhou J., Ji X. other authors 2011; An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China. Virology 417:1–8 [View Article][PubMed]
    [Google Scholar]
  63. Yun T., Zhang D., Ma X., Cao Z., Chen L., Ni Z., Ye W., Yu B., Hua J. other authors 2012; Complete genome sequence of a novel flavivirus, duck Tembusu virus, isolated from ducks and geese in China. J Virol 86:3406–3407 [View Article][PubMed]
    [Google Scholar]
  64. Zuker M. 2003; mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043554-0
Loading
/content/journal/jgv/10.1099/vir.0.043554-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error