1887

Abstract

Two high-molecular-mass dsRNAs of approximately 14 and 15 kbp were isolated from the common bean () cultivar Black Turtle Soup. These dsRNAs did not appear to cause obvious disease symptoms, and were transmitted through seeds at nearly 100 % efficiency. Sequence information indicates that they are the genomes of distinct endornavirus species, for which the names endornavirus 1 (PvEV-1) and endornavirus 2 (PvEV-2) are proposed. The PvEV-1 genome consists of 13 908 bp and potentially encodes a single polyprotein of 4496 aa, while that of PvEV-2 consists of 14 820 bp and potentially encodes a single ORF of 4851 aa. PvEV-1 is more similar to endornavirus, while PvEV-2 is more similar to bell pepper endornavirus. Both viruses have a site-specific nick near the 5′ region of the coding strand, which is a common property of the endornaviruses. Their polyproteins contain domains of RNA helicase, UDP-glycosyltransferase and RNA-dependent RNA polymerase, which are conserved in other endornaviruses. However, a viral methyltransferase domain was found in the N-terminal region of PvEV-2, but was absent in PvEV-1. Results of cell-fractionation studies suggested that their subcellular localizations were different. Most endornavirus-infected bean cultivars tested were co-infected with both viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.044487-0
2013-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/1/220.html?itemId=/content/journal/jgv/10.1099/vir.0.044487-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Anagnostakis S. L. 1988; Cryphonectria parasitica, cause of chestnut blight. Adv Plant Pathol 6:123–136
    [Google Scholar]
  3. Chun S. J., Lee Y. H. 1997; Inheritance of dsRNAs in the rice blast fungus, Magnaporthe grisea . FEMS Microbiol Lett 148:159–162 [View Article][PubMed]
    [Google Scholar]
  4. Coenen A., Kevei F., Hoekstra R. F. 1997; Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans . Genet Res 69:1–10 [View Article][PubMed]
    [Google Scholar]
  5. Coutts R. H. A. 2005; First report of an endornavirus in the Cucurbitaceae . Virus Genes 31:361–362 [View Article][PubMed]
    [Google Scholar]
  6. Fukuhara T., Gibbs M. J. 2012; Family Endornaviridae . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 519–521 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Tokyo: Elsevier Academic Press;
    [Google Scholar]
  7. Fukuhara T., Moriyama H. 2008; Endornaviruses. In Encyclopedia of Virology, 3rd edn. pp. 109–116 Edited by Mahy B. W. J., van Regenmortel M. H. V. Oxford: Elsevier; [View Article]
    [Google Scholar]
  8. Fukuhara T., Moriyama H., Pak J. Y., Hyakutake H., Nitta T. 1993; Enigmatic double-stranded RNA in Japonica rice. Plant Mol Biol 21:1121–1130 [View Article][PubMed]
    [Google Scholar]
  9. Fukuhara T., Moriyama H., Nitta T. 1995; The unusual structure of a novel RNA replicon in rice. J Biol Chem 270:18147–18149 [View Article][PubMed]
    [Google Scholar]
  10. Fukuhara T., Koga R., Aoki N., Yuki C., Yamamoto N., Oyama N., Udagawa T., Horiuchi H., Miyazaki S. other authors 2006; The wide distribution of endornaviruses, large double-stranded RNA replicons with plasmid-like properties. Arch Virol 151:995–1002 [View Article][PubMed]
    [Google Scholar]
  11. Gibbs M. J., Koga R., Moriyama H., Pfeiffer P., Fukuhara T. 2000; Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA virus. J Gen Virol 81:227–233[PubMed]
    [Google Scholar]
  12. Hacker C. V., Brasier C. M., Buck K. W. 2005; A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J Gen Virol 86:1561–1570 [View Article][PubMed]
    [Google Scholar]
  13. Huang Y. L., Han Y. T., Chang Y. T., Hsu Y. H., Meng M. 2004; Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of Bamboo mosaic virus . J Virol 78:1271–1280 [View Article][PubMed]
    [Google Scholar]
  14. Isogai M., Uyeda I., Hataya T. 1998; An efficient cloning strategy for viral double-stranded RNAs with unknown sequences. Ann Phytopathological Soc Jpn 64:244–248 [View Article]
    [Google Scholar]
  15. Jiang S. M., Wang L., Reeves P. R. 2001; Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun 69:1244–1255 [View Article][PubMed]
    [Google Scholar]
  16. Koonin E. V., Dolja V. V., Morris T. J. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [View Article][PubMed]
    [Google Scholar]
  17. Lefebvre A., Scalla R., Pfeiffer P. 1990; The double-stranded RNA associated with the ‘447’ cytoplasmic male sterility in Vicia faba is packaged together with its replicase in cytoplasmic membranous vesicles. Plant Mol Biol 14:477–490 [View Article][PubMed]
    [Google Scholar]
  18. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48[PubMed]
    [Google Scholar]
  19. Mackenzie S. A., Pring D. R., Bassett M. J. 1988; Large double-stranded RNA molecules in Phaseolus vulgaris L. are not associated with cytoplasmic male sterility. Theor Appl Genet 76:59–63 [View Article]
    [Google Scholar]
  20. Moriyama H., Nitta T., Fukuhara T. 1995; Double-stranded RNA in rice: a novel RNA replicon in plants. Mol Gen Genet 248:364–369 [View Article][PubMed]
    [Google Scholar]
  21. Moriyama H., Kanaya K., Wang J. Z., Nitta T., Fukuhara T. 1996; Stringently and developmentally regulated levels of a cytoplasmic double-stranded RNA and its high-efficiency transmission via egg and pollen in rice. Plant Mol Biol 31:713–719 [View Article][PubMed]
    [Google Scholar]
  22. Moriyama H., Horiuchi H., Koga R., Fukuhara T. 1999a; Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. J Biol Chem 274:6882–6888 [View Article][PubMed]
    [Google Scholar]
  23. Moriyama H., Horiuchi H., Nitta T., Fukuhara T. 1999b; Unusual inheritance of evolutionarily-related double-stranded RNAs in interspecific hybrid between rice plants Oryza sativa and Oryza rufipogon . Plant Mol Biol 39:1127–1136 [View Article][PubMed]
    [Google Scholar]
  24. Morris T. J., Dodds J. A. 1979; Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854–858 [View Article]
    [Google Scholar]
  25. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:21–4 http://www.nrbsc.org/gfx/genedoc/ebinet.htm
    [Google Scholar]
  26. Okada R., Kiyota E., Sabanadzovic S., Moriyama H., Fukuhara T., Saha P., Roossinck M. J., Severin A., Valverde R. A. 2011; Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum . J Gen Virol 92:2664–2673 [View Article][PubMed]
    [Google Scholar]
  27. Osaki H., Nakamura H., Sasaki A., Matsumoto N., Yoshida K. 2006; An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa . Virus Res 118:143–149 [View Article][PubMed]
    [Google Scholar]
  28. Pfeiffer P. 1998; Nucleotide sequence, genetic organization and expression strategy of the double-stranded RNA associated with the ‘447’ cytoplasmic male sterility trait in Vicia faba . J Gen Virol 79:2349–2358[PubMed]
    [Google Scholar]
  29. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874[PubMed]
    [Google Scholar]
  30. Rogers H. J., Buck K. W., Brasier C. M. 1986; Transmission of double-stranded RNA and a disease factor in Ophiostoma ulmi. . Plant Pathol 35:277–287 [CrossRef]
    [Google Scholar]
  31. Roossinck M. J. 2010; Lifestyles of plant viruses. Philos Trans R Soc Lond B Biol Sci 365:1899–1905 [View Article][PubMed]
    [Google Scholar]
  32. Roossinck M. J., Sabanadzovic S., Okada R., Valverde R. A. 2011; The remarkable evolutionary history of endornaviruses. J Gen Virol 92:2674–2678 [View Article][PubMed]
    [Google Scholar]
  33. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1992; Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134 [View Article][PubMed]
    [Google Scholar]
  34. Sabanadzovic S., Valverde R. A. 2011; Properties and detection of two cryptoviruses from pepper (Capsicum annuum). Virus Genes 43:307–312 [View Article][PubMed]
    [Google Scholar]
  35. Stielow B., Klenk H.-P., Menzel W. 2011; Complete genome sequence of the first endornavirus from the ascocarp of the ectomycorrhizal fungus Tuber aestivum Vittad. Arch Virol 156:343–345 [View Article][PubMed]
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  38. Tuomivirta T. T., Kaitera J., Hantula J. 2009; A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol 90:2299–2305 [View Article][PubMed]
    [Google Scholar]
  39. Urayama S., Moriyama H., Aoki N., Nakazawa Y., Okada R., Kiyota E., Miki D., Shimamoto K., Fukuhara T. 2010; Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol 51:58–67 [View Article][PubMed]
    [Google Scholar]
  40. Valverde R. A., Gutierrez D. L. 2007; Transmission of a dsRNA in bell pepper and evidence that it consists of the genome of an endornavirus. Virus Genes 35:399–403 [View Article][PubMed]
    [Google Scholar]
  41. Valverde R. A., Nameth S., Abdallha O., Al-Musa O., Desjardins P., Dodds J. A. 1990; Indigenous double-stranded RNA from pepper (Capsicum annuum). Plant Sci 67:195–201 [View Article]
    [Google Scholar]
  42. Villanueva F., Sabanadzovic S., Valverde R. A., Navas-Castillo J. 2012; Complete genome sequence of a double-stranded RNA virus from avocado. J Virol 86:1282–1283 [View Article][PubMed]
    [Google Scholar]
  43. Wakarchuk D. A., Hamilton R. I. 1985; Cellular double-stranded RNA in Phaseolus vulgaris . Plant Mol Biol 5:55–63 [View Article]
    [Google Scholar]
  44. Wakarchuk D. A., Hamilton R. I. 1990; Partial nucleotide sequence from enigmatic dsRNAs in Phaseolus vulgaris . Plant Mol Biol 14:637–639 [View Article][PubMed]
    [Google Scholar]
  45. Warnecke D., Erdmann R., Fahl A., Hube B., Müller F., Zank T., Zähringer U., Heinz E. 1999; Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum . J Biol Chem 274:13048–13059 [View Article][PubMed]
    [Google Scholar]
  46. Whelan S., Goldman N. 2001; A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699 [View Article][PubMed]
    [Google Scholar]
  47. Zabalgogeazcoa I. A., Gildow F. E. 1992; Double-stranded ribonucleic acid in ‘Barsoy’ barley. Plant Sci 83:187–194 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.044487-0
Loading
/content/journal/jgv/10.1099/vir.0.044487-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error