1887

Abstract

Airway macrophages (MΦ) and dendritic cells (DC) are important components of the innate host defence. Historically, these immune cells have been considered to play a critical role in controlling the severity of influenza A virus (IAV) infection by limiting virus release, initiating local inflammatory responses and by priming subsequent adaptive immune responses. However, some IAV strains have been reported to replicate productively in human immune cells. Potential amplification and dissemination of IAV from immune cells may therefore be an important virulence determinant. Herein, we will review findings in relation to the fate of IAV following infection of MΦ and DC. Insights regarding the consequences and outcomes of IAV infection of airway MΦ and DC are discussed in order to gain a better understanding of the pathogenesis of influenza virus.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045021-0
2012-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/11/2315.html?itemId=/content/journal/jgv/10.1099/vir.0.045021-0&mimeType=html&fmt=ahah

References

  1. Abdel-Ghafar A. N., Chotpitayasunondh T., Gao Z., Hayden F. G., Nguyen D. H., de Jong M. D., Naghdaliyev A., Peiris J. S., Shindo N. other authors 2008; Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358:261–273 [View Article][PubMed]
    [Google Scholar]
  2. Allen I. C., Scull M. A., Moore C. B., Holl E. K., McElvania-TeKippe E., Taxman D. J., Guthrie E. H., Pickles R. J., Ting J. P. 2009; The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565 [View Article][PubMed]
    [Google Scholar]
  3. Baskin C. R., Bielefeldt-Ohmann H., Tumpey T. M., Sabourin P. J., Long J. P., García-Sastre A., Tolnay A. E., Albrecht R., Pyles J. A. other authors 2009; Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A 106:3455–3460 [View Article][PubMed]
    [Google Scholar]
  4. Bender A., Albert M., Reddy A., Feldman M., Sauter B., Kaplan G., Hellman W., Bhardwaj N. 1998; The distinctive features of influenza virus infection of dendritic cells. Immunobiology 198:552–567 [View Article][PubMed]
    [Google Scholar]
  5. Bergamaschi A., Pancino G. 2010; Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7:31 [View Article][PubMed]
    [Google Scholar]
  6. Brass A. L., Huang I. C., Benita Y., John S. P., Krishnan M. N., Feeley E. M., Ryan B. J., Weyer J. L., van der Weyden L. other authors 2009; The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139:1243–1254 [View Article][PubMed]
    [Google Scholar]
  7. Brookes S. M., Núñez A., Choudhury B., Matrosovich M., Essen S. C., Clifford D., Slomka M. J., Kuntz-Simon G., Garcon F. other authors 2010; Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs. PLoS ONE 5:e9068 [View Article][PubMed]
    [Google Scholar]
  8. Bruce E. A., Abbink T. E., Wise H. M., Rollason R., Galao R. P., Banting G., Neil S. J., Digard P. 2012; Release of filamentous and spherical influenza A virus is not restricted by tetherin. J Gen Virol 93:963–969 [View Article][PubMed]
    [Google Scholar]
  9. Calore E. E., Uip D. E., Perez N. M. 2011; Pathology of the swine-origin influenza A (H1N1) flu. Pathol Res Pract 207:86–90 [View Article][PubMed]
    [Google Scholar]
  10. Capelozzi V. L., Parra E. R., Ximenes M., Bammann R. H., Barbas C. S., Duarte M. I. 2010; Pathological and ultrastructural analysis of surgical lung biopsies in patients with swine-origin influenza type A/H1N1 and acute respiratory failure. Clinics (Sao Paulo) 65:1229–1237 [View Article][PubMed]
    [Google Scholar]
  11. Cella M., Salio M., Sakakibara Y., Langen H., Julkunen I., Lanzavecchia A. 1999; Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189:821–829 [View Article][PubMed]
    [Google Scholar]
  12. Chehimi J., Luo Q., Azzoni L., Shawver L., Ngoubilly N., June R., Jerandi G., Farabaugh M., Montaner L. J. 2003; HIV-1 transmission and cytokine-induced expression of DC-SIGN in human monocyte-derived macrophages. J Leukoc Biol 74:757–763 [View Article][PubMed]
    [Google Scholar]
  13. Childs R. A., Palma A. S., Wharton S., Matrosovich T., Liu Y., Chai W., Campanero-Rhodes M. A., Zhang Y., Eickmann M. other authors 2009; Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol 27:797–799 [View Article][PubMed]
    [Google Scholar]
  14. Chu V. C., Whittaker G. R. 2004; Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci U S A 101:18153–18158 [View Article][PubMed]
    [Google Scholar]
  15. Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. 1998; Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477 [View Article][PubMed]
    [Google Scholar]
  16. Connor R. J., Kawaoka Y., Webster R. G., Paulson J. C. 1994; Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23 [View Article][PubMed]
    [Google Scholar]
  17. de Jong M. D., Simmons C. P., Thanh T. T., Hien V. M., Smith G. J. D., Chau T. N. B., Hoang D. M., Chau N. V. V., Khanh T. H. other authors 2006; Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12:1203–1207 [View Article][PubMed]
    [Google Scholar]
  18. Engering A. J., Cella M., Fluitsma D. M., Hoefsmit E. C., Lanzavecchia A., Pieters J. 1997; Mannose receptor mediated antigen uptake and presentation in human dendritic cells. Adv Exp Med Biol 417:183–187[PubMed]
    [Google Scholar]
  19. Evans D. T., Serra-Moreno R., Singh R. K., Guatelli J. C. 2010; BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol 18:388–396 [View Article][PubMed]
    [Google Scholar]
  20. Everitt A. R., Clare S., Pertel T., John S. P., Wash R. S., Smith S. E., Chin C. R., Feeley E. M., Sims J. S. other authors 2012; IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523 [View Article][PubMed]
    [Google Scholar]
  21. Fedson D. S. 2009; Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respir Viruses 3:129–142 [View Article][PubMed]
    [Google Scholar]
  22. Feeley E. M., Sims J. S., John S. P., Chin C. R., Pertel T., Chen L. M., Gaiha G. D., Ryan B. J., Donis R. O. other authors 2011; IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 7:e1002337 [View Article][PubMed]
    [Google Scholar]
  23. Fislová T., Gocník M., Sládková T., Durmanová V., Rajcáni J., Varecková E., Mucha V., Kostolanský F. 2009; Multiorgan distribution of human influenza A virus strains observed in a mouse model. Arch Virol 154:409–419 [View Article][PubMed]
    [Google Scholar]
  24. Friesenhagen J., Boergeling Y., Hrincius E., Ludwig S., Roth J., Viemann D. 2012; Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages. J Leukoc Biol 92:11–20 [View Article][PubMed]
    [Google Scholar]
  25. Geijtenbeek T. B. H., Torensma R., van Vliet S. J., van Duijnhoven G. C. F., Adema G. J., van Kooyk Y., Figdor C. G. 2000; Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585 [View Article][PubMed]
    [Google Scholar]
  26. Gill J. R., Sheng Z. M., Ely S. F., Guinee D. G., Beasley M. B., Suh J., Deshpande C., Mollura D. J., Morens D. M. other authors 2010; Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med 134:235–243[PubMed]
    [Google Scholar]
  27. Ginsberg H. S., Horsfall F. L. Jr 1952; Quantitative aspects of the multiplication of influenza A virus in the mouse lung; relation between the degree of viral multiplication and the extent of pneumonia. J Exp Med 95:135–145 [View Article][PubMed]
    [Google Scholar]
  28. Grayson M. H., Holtzman M. J. 2007; Emerging role of dendritic cells in respiratory viral infection. J Mol Med (Berl) 85:1057–1068 [View Article][PubMed]
    [Google Scholar]
  29. Guan Y., Vijaykrishna D., Bahl J., Zhu H., Wang J., Smith G. J. 2010; The emergence of pandemic influenza viruses. Protein Cell 1:9–13 [View Article][PubMed]
    [Google Scholar]
  30. Guarner J., Falcón-Escobedo R. 2009; Comparison of the pathology caused by H1N1, H5N1, and H3N2 influenza viruses. Arch Med Res 40:655–661 [View Article][PubMed]
    [Google Scholar]
  31. Higashi N., Morikawa A., Fujioka K., Fujita Y., Sano Y., Miyata-Takeuchi M., Suzuki N., Irimura T. 2002; Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int Immunol 14:545–554 [View Article][PubMed]
    [Google Scholar]
  32. Hoeve M. A., Nash A. A., Jackson D., Randall R. E., Dransfield I. 2012; Influenza virus A infection of human monocyte and macrophage subpopulations reveals increased susceptibility associated with cell differentiation. PLoS ONE 7:e29443 [View Article][PubMed]
    [Google Scholar]
  33. Holt P. G. 1986; Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol 63:261–270[PubMed]
    [Google Scholar]
  34. Ibricevic A., Pekosz A., Walter M. J., Newby C., Battaile J. T., Brown E. G., Holtzman M. J., Brody S. L. 2006; Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 80:7469–7480 [View Article][PubMed]
    [Google Scholar]
  35. Imai Y., Akimoto Y., Mizuochi S., Kimura T., Hirano H., Irimura T. 1995; Restricted expression of galactose/N-acetylgalactosamine-specific macrophage C-type lectin to connective tissue and to metastatic lesions in mouse lung. Immunology 86:591–598[PubMed]
    [Google Scholar]
  36. Ioannidis L. J., Verity E. E., Crawford S., Rockman S. P., Brown L. E. 2012; Abortive replication of influenza virus in mouse dendritic cells. J Virol 86:5922–5925 [View Article][PubMed]
    [Google Scholar]
  37. Johnson N. P., Mueller J. 2002; Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull Hist Med 76:105–115 [View Article][PubMed]
    [Google Scholar]
  38. Kang Y. M., Song B. M., Lee J. S., Kim H. S., Seo S. H. 2011; Pandemic H1N1 influenza virus causes a stronger inflammatory response than seasonal H1N1 influenza virus in ferrets. Arch Virol 156:759–767 [View Article][PubMed]
    [Google Scholar]
  39. Khatri M., Dwivedi V., Krakowka S., Manickam C., Ali A., Wang L., Qin Z., Renukaradhya G. J., Lee C. W. 2010; Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus. J Virol 84:11210–11218 [View Article][PubMed]
    [Google Scholar]
  40. Korteweg C., Gu J. 2008; Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 172:1155–1170 [View Article][PubMed]
    [Google Scholar]
  41. Kreijtz J. H., Fouchier R. A., Rimmelzwaan G. F. 2011; Immune responses to influenza virus infection. Virus Res 162:19–30 [View Article][PubMed]
    [Google Scholar]
  42. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. 2011; SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657 [View Article][PubMed]
    [Google Scholar]
  43. Lange E., Kalthoff D., Blohm U., Teifke J. P., Breithaupt A., Maresch C., Starick E., Fereidouni S., Hoffmann B. other authors 2009; Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J Gen Virol 90:2119–2123 [View Article][PubMed]
    [Google Scholar]
  44. Lau S. C., Scholtissek C. 1995; Abortive infection of Vero cells by an influenza A virus (FPV). Virology 212:225–231 [View Article][PubMed]
    [Google Scholar]
  45. Londrigan S. L., Tate M. D., Brooks A. G., Reading P. C. 2012; Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 92:97–106 [View Article][PubMed]
    [Google Scholar]
  46. Manel N., Hogstad B., Wang Y., Levy D. E., Unutmaz D., Littman D. R. 2010; A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–217 [View Article][PubMed]
    [Google Scholar]
  47. McGill J., Heusel J. W., Legge K. L. 2009; Innate immune control and regulation of influenza virus infections. J Leukoc Biol 86:803–812 [View Article][PubMed]
    [Google Scholar]
  48. Memoli M. J., Tumpey T. M., Jagger B. W., Dugan V. G., Sheng Z. M., Qi L., Kash J. C., Taubenberger J. K. 2009; An early ‘classical’ swine H1N1 influenza virus shows similar pathogenicity to the 1918 pandemic virus in ferrets and mice. Virology 393:338–345 [View Article][PubMed]
    [Google Scholar]
  49. Mok C. K. P., Lee D. C. W., Cheung C. Y., Peiris M., Lau A. S. Y. 2007; Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. J Gen Virol 88:1275–1280 [View Article][PubMed]
    [Google Scholar]
  50. Moltedo B., Li W., Yount J. S., Moran T. M. 2011; Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog 7:e1002345 [View Article][PubMed]
    [Google Scholar]
  51. Neil S. J., Zang T., Bieniasz P. D. 2008; Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430 [View Article][PubMed]
    [Google Scholar]
  52. Nguyen D. G., Hildreth J. E. K. 2003; Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol 33:483–493 [View Article][PubMed]
    [Google Scholar]
  53. Obenauer J. C., Denson J., Mehta P. K., Su X., Mukatira S., Finkelstein D. B., Xu X., Wang J., Ma J. other authors 2006; Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580 [View Article][PubMed]
    [Google Scholar]
  54. Oshansky C. M., Pickens J. A., Bradley K. C., Jones L. P., Saavedra-Ebner G. M., Barber J. P., Crabtree J. M., Steinhauer D. A., Tompkins S. M., Tripp R. A. 2011; Avian influenza viruses infect primary human bronchial epithelial cells unconstrained by sialic acid α2,3 residues. PLoS ONE 6:e21183 [View Article][PubMed]
    [Google Scholar]
  55. Osterlund P., Pirhonen J., Ikonen N., Rönkkö E., Strengell M., Mäkelä S. M., Broman M., Hamming O. J., Hartmann R. other authors 2010; Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol 84:1414–1422 [View Article][PubMed]
    [Google Scholar]
  56. Peiris J. S., Cheung C. Y., Leung C. Y., Nicholls J. M. 2009; Innate immune responses to influenza A H5N1: friend or foe?. Trends Immunol 30:574–584 [View Article][PubMed]
    [Google Scholar]
  57. Perrone L. A., Plowden J. K., García-Sastre A., Katz J. M., Tumpey T. M. 2008; H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4:e1000115 [View Article][PubMed]
    [Google Scholar]
  58. Rapoport E. M., Mochalova L. V., Gabius H. J., Romanova J., Bovin N. V. 2006; Search for additional influenza virus to cell interactions. Glycoconj J 23:115–125 [View Article][PubMed]
    [Google Scholar]
  59. Reading P. C., Miller J. L., Anders E. M. 2000; Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 74:5190–5197 [View Article][PubMed]
    [Google Scholar]
  60. Rodgers B., Mims C. A. 1981; Interaction of influenza virus with mouse macrophages. Infect Immun 31:751–757[PubMed]
    [Google Scholar]
  61. Rodgers B. C., Mims C. A. 1982; Influenza virus replication in human alveolar macrophages. J Med Virol 9:177–184 [View Article][PubMed]
    [Google Scholar]
  62. Rogers G. N., D’Souza B. L. 1989; Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173:317–322 [View Article][PubMed]
    [Google Scholar]
  63. Rogers G. N., Paulson J. C. 1983; Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373 [View Article][PubMed]
    [Google Scholar]
  64. Rosen D. G., Lopez A. E., Anzalone M. L., Wolf D. A., Derrick S. M., Florez L. F., Gonsoulin M. L., Hines M. O. III, Mitchell R. A. other authors 2010; Postmortem findings in eight cases of influenza A/H1N1. Mod Pathol 23:1449–1457 [View Article][PubMed]
    [Google Scholar]
  65. Safronetz D., Rockx B., Feldmann F., Belisle S. E., Palermo R. E., Brining D., Gardner D., Proll S. C., Marzi A. other authors 2011; Pandemic swine-origin H1N1 influenza A virus isolates show heterogeneous virulence in macaques. J Virol 85:1214–1223 [View Article][PubMed]
    [Google Scholar]
  66. Sakabe S., Iwatsuki-Horimoto K., Takano R., Nidom C. A., Le M., Nagamura-Inoue T., Horimoto T., Yamashita N., Kawaoka Y. 2011; Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza viruses. J Gen Virol 92:1428–1434 [View Article][PubMed]
    [Google Scholar]
  67. Schindler M., Rajan D., Banning C., Wimmer P., Koppensteiner H., Iwanski A., Specht A., Sauter D., Dobner T., Kirchhoff F. 2010; Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue. Retrovirology 7:1 [View Article][PubMed]
    [Google Scholar]
  68. Schneberger D., Aharonson-Raz K., Singh B. 2011; Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell Tissue Res 343:97–106 [View Article][PubMed]
    [Google Scholar]
  69. Schrauwen E. J., Herfst S., Leijten L. M., van Run P., Bestebroer T. M., Linster M., Bodewes R., Kreijtz J. H., Rimmelzwaan G. F. other authors 2012; The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J Virol 86:3975–3984 [View Article][PubMed]
    [Google Scholar]
  70. Shortman K., Liu Y. J. 2002; Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161 [View Article][PubMed]
    [Google Scholar]
  71. Skehel J. J., Wiley D. C. 2000; Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569 [View Article][PubMed]
    [Google Scholar]
  72. Smed-Sörensen A., Chalouni C., Chatterjee B., Cohn L., Blattmann P., Nakamura N., Delamarre L., Mellman I. 2012; Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells. PLoS Pathog 8:e1002572 [View Article][PubMed]
    [Google Scholar]
  73. Smith G. J. D., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J. other authors 2009; Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125 [View Article][PubMed]
    [Google Scholar]
  74. Smith J. H., Nagy T., Driskell E., Brooks P., Tompkins S. M., Tripp R. A. 2011; Comparative pathology in ferrets infected with H1N1 influenza A viruses isolated from different hosts. J Virol 85:7572–7581 [View Article][PubMed]
    [Google Scholar]
  75. Soilleux E. J., Morris L. S., Leslie G., Chehimi J., Luo Q., Levroney E., Trowsdale J., Montaner L. J., Doms R. W. other authors 2002; Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71:445–457[PubMed]
    [Google Scholar]
  76. Stephenson J. D., Shepherd V. L. 1987; Purification of the human alveolar macrophage mannose receptor. Biochem Biophys Res Commun 148:883–889 [View Article][PubMed]
    [Google Scholar]
  77. Summerfield A., McCullough K. C. 2009; Dendritic cells in innate and adaptive immune responses against influenza virus. Viruses 1:1022–1034 [View Article][PubMed]
    [Google Scholar]
  78. Suzuki Y. 2005; Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408 [View Article][PubMed]
    [Google Scholar]
  79. Tate M. D., Pickett D. L., van Rooijen N., Brooks A. G., Reading P. C. 2010; Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 84:7569–7580 [View Article][PubMed]
    [Google Scholar]
  80. Tate M. D., Schilter H. C., Brooks A. G., Reading P. C. 2011; Responses of mouse airway epithelial cells and alveolar macrophages to virulent and avirulent strains of influenza A virus. Viral Immunol 24:77–88 [View Article][PubMed]
    [Google Scholar]
  81. Taubenberger J. K., Morens D. M. 2008; The pathology of influenza virus infections. Annu Rev Pathol 3:499–522 [View Article][PubMed]
    [Google Scholar]
  82. Thitithanyanont A., Engering A., Ekchariyawat P., Wiboon-ut S., Limsalakpetch A., Yongvanitchit K., Kum-Arb U., Kanchongkittiphon W., Utaisincharoen P. other authors 2007; High susceptibility of human dendritic cells to avian influenza H5N1 virus infection and protection by IFN-α and TLR ligands. J Immunol 179:5220–5227[PubMed] [CrossRef]
    [Google Scholar]
  83. Thompson C. I., Barclay W. S., Zambon M. C., Pickles R. J. 2006; Infection of human airway epithelium by human and avian strains of influenza A virus. J Virol 80:8060–8068 [View Article][PubMed]
    [Google Scholar]
  84. To K. F., Chan P. K., Chan K. F., Lee W. K., Lam W. Y., Wong K. F., Tang N. L., Tsang D. N., Sung R. Y. other authors 2001; Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol 63:242–246 [View Article][PubMed]
    [Google Scholar]
  85. Tumpey T. M., Basler C. F., Aguilar P. V., Zeng H., Solórzano A., Swayne D. E., Cox N. J., Katz J. M., Taubenberger J. K. other authors 2005a; Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80 [View Article][PubMed]
    [Google Scholar]
  86. Tumpey T. M., García-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Pantin-Jackwood M. J., Schultz-Cherry S., Solórzano A., Van Rooijen N. other authors 2005b; Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79:14933–14944 [View Article][PubMed]
    [Google Scholar]
  87. van Riel D., Leijten L. M. E., van der Eerden M., Hoogsteden H. C., Boven L. A., Lambrecht B. N., Osterhaus A. D. M. E., Kuiken T. 2011; Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-α induction. PLoS Pathog 7:e1002099 [View Article][PubMed]
    [Google Scholar]
  88. van Vliet S. J., Gringhuis S. I., Geijtenbeek T. B., van Kooyk Y. 2006a; Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol 7:1200–1208 [View Article][PubMed]
    [Google Scholar]
  89. van Vliet S. J., van Liempt E., Geijtenbeek T. B., van Kooyk Y. 2006b; Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 211:577–585 [View Article][PubMed]
    [Google Scholar]
  90. van Vliet S. J., Saeland E., van Kooyk Y. 2008; Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol 29:83–90 [View Article][PubMed]
    [Google Scholar]
  91. Wang S. F., Huang J. C., Lee Y. M., Liu S. J., Chan Y. J., Chau Y. P., Chong P., Chen Y. M. 2008; DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans. Biochem Biophys Res Commun 373:561–566 [View Article][PubMed]
    [Google Scholar]
  92. Watanabe R., Leser G. P., Lamb R. A. 2011; Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin. Virology 417:50–56 [View Article][PubMed]
    [Google Scholar]
  93. Wells M. A., Albrecht P., Daniel S., Ennis F. A. 1978; Host defense mechanisms against influenza virus: interaction of influenza virus with murine macrophages in vitro. Infect Immun 22:758–762[PubMed]
    [Google Scholar]
  94. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394 [View Article][PubMed]
    [Google Scholar]
  95. Yan N., Chen Z. J. 2012; Intrinsic antiviral immunity. Nat Immunol 13:214–222 [View Article][PubMed]
    [Google Scholar]
  96. Yondola M. A., Fernandes F., Belicha-Villanueva A., Uccelini M., Gao Q., Carter C., Palese P. 2011; Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol 85:2480–2491 [View Article][PubMed]
    [Google Scholar]
  97. Yu W. C. L., Chan R. W. Y., Wang J., Travanty E. A., Nicholls J. M., Peiris J. S., Mason R. J., Chan M. C. W. 2011; Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J Virol 85:6844–6855 [View Article][PubMed]
    [Google Scholar]
  98. Zimmermann P., Mänz B., Haller O., Schwemmle M., Kochs G. 2011; The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J Virol 85:8133–8140 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045021-0
Loading
/content/journal/jgv/10.1099/vir.0.045021-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error