1887

Abstract

Schmallenberg virus (SBV) is a newly emerged orthobunyavirus that has caused widespread disease in cattle, sheep and goats in Europe. Like other orthobunyaviruses, SBV is characterized by a tripartite negative-sense RNA genome that encodes four structural and two non-structural proteins. This study showed that SBV has a wide host range, and that BHK-21 cells are a convenient host for both SBV propagation and assay by plaque titration. The SBV genome segments were cloned as cDNA and a three-plasmid rescue system was established to recover infectious virus. Recombinant virus behaved similarly in cell culture to authentic virus. The ORF for the non-structural NSs protein, encoded on the smallest genome segment, was disrupted by introduction of translation stop codons in the appropriate cDNA, and when this plasmid was used in reverse genetics, a recombinant virus that lacked NSs expression was recovered. This virus had reduced capacity to shut-off host-cell protein synthesis compared with the wild-type virus. In addition, the NSs-deleted virus induced interferon (IFN) in cells, indicating that, like other orthobunyaviruses, NSs functions as an IFN antagonist, most probably by globally inhibiting host-cell metabolism. The development of a robust reverse genetics system for SBV will facilitate investigation of its pathogenic mechanisms as well as the creation of attenuated strains that could be candidate vaccines.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049981-0
2013-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/851.html?itemId=/content/journal/jgv/10.1099/vir.0.049981-0&mimeType=html&fmt=ahah

References

  1. Arnaud F., Black S. G., Murphy L., Griffiths D. J., Neil S. J., Spencer T. E., Palmarini M. 2010; Interplay between ovine bone marrow stromal cell antigen 2/tetherin and endogenous retroviruses. J Virol 84:4415–4425 [View Article][PubMed]
    [Google Scholar]
  2. Beer M., Conraths F. J., Van der Poel W. H. 2013; ‘Schmallenberg virus’ – a novel orthobunyavirus emerging in Europe. Epidemiol Infect 141:1–8 [View Article][PubMed]
    [Google Scholar]
  3. Billecocq A., Gauliard N., Le May N., Elliott R. M., Flick R., Bouloy M. 2008; RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378:377–384 [View Article][PubMed]
    [Google Scholar]
  4. Bird B. H., Maartens L. H., Campbell S., Erasmus B. J., Erickson B. R., Dodd K. A., Spiropoulou C. F., Cannon D., Drew C. P. other authors 2011; Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J Virol 85:12901–12909 [View Article][PubMed]
    [Google Scholar]
  5. Bishop D. H. L. 1990; Bunyaviridae and their replication. I. Bunyaviridae . In Virology, 2nd edn. pp. 1155–1173 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  6. Blakqori G., Weber F. 2005; Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol 79:10420–10428 [View Article][PubMed]
    [Google Scholar]
  7. Brennan B., Welch S. R., McLees A., Elliott R. M. 2011; Creation of a recombinant Rift Valley fever virus with a two-segmented genome. J Virol 85:10310–10318 [View Article][PubMed]
    [Google Scholar]
  8. Bridgen A., Elliott R. M. 1996; Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93:15400–15404 [View Article][PubMed]
    [Google Scholar]
  9. Buchholz U. J., Finke S., Conzelmann K. K. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259[PubMed]
    [Google Scholar]
  10. Calisher C. H. 1996; History, classification and taxonomy of viruses in the family Bunyaviridae . In The Bunyaviridae pp. 1–17 Edited by Elliott R. M. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  11. Carlton-Smith C., Elliott R. M. 2012; Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera orthobunyavirus replication. J Virol 86:11548–11557 [View Article][PubMed]
    [Google Scholar]
  12. De Regge N., Deblauwe I., De Deken R., Vantieghem P., Madder M., Geysen D., Smeets F., Losson B., van den Berg T., Cay A. B. 2012; Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. Transbound Emerg Dis 59:471–475 [View Article][PubMed]
    [Google Scholar]
  13. Elliott R. M. 1997; Emerging viruses: the Bunyaviridae . Mol Med 3:572–577[PubMed]
    [Google Scholar]
  14. Elliott R. M. 2009; Bunyaviruses and climate change. Clin Microbiol Infect 15:510–517 [View Article][PubMed]
    [Google Scholar]
  15. Elliott R. M. 2012; Bunyavirus reverse genetics and applications to studying interactions with host cells. In Reverse Genetics of RNA Viruses: Applications and Perspectives pp. 200–223 Edited by Bridgen A. Chichester, UK: John Wiley & Sons, Ltd; [View Article]
    [Google Scholar]
  16. Elliott R. M., Blakqori G. 2011; Molecular biology of orthobunyaviruses. In Bunyaviridae Molecular and Cellular Biology pp. 1–39 Edited by Plyusnin A., Elliott R. M. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  17. European Food Safety Authority 2012 Schmallenberg Virus: Analysis of the Epidemiological Data Parma: EFSA;
    [Google Scholar]
  18. Feldmann H. 2011; Truly emerging – a new disease caused by a novel virus. N Engl J Med 364:1561–1563 [View Article][PubMed]
    [Google Scholar]
  19. Garigliany M. M., Bayrou C., Kleijnen D., Cassart D., Jolly S., Linden A., Desmecht D. 2012; Schmallenberg virus: a new Shamonda/Sathuperi-like virus on the rise in Europe. Antiviral Res 95:82–87 [View Article][PubMed]
    [Google Scholar]
  20. Gerrard S. R., Bird B. H., Albariño C. G., Nichol S. T. 2007; The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359:459–465 [View Article][PubMed]
    [Google Scholar]
  21. Habjan M., Penski N., Spiegel M., Weber F. 2008; T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol 89:2157–2166 [View Article][PubMed]
    [Google Scholar]
  22. Hart T. J., Kohl A., Elliott R. M. 2009; Role of the NSs protein in the zoonotic capacity of orthobunyaviruses. Zoonoses Public Health 56:285–296 [View Article][PubMed]
    [Google Scholar]
  23. Hoffmann B., Scheuch M., Höper D., Jungblut R., Holsteg M., Schirrmeier H., Eschbaumer M., Goller K. V., Wernike K. other authors 2012; Novel orthobunyavirus in cattle, Europe, 2011. Emerg Infect Dis 18:469–472 [View Article][PubMed]
    [Google Scholar]
  24. Igarashi A. 1978; Isolation of a Singh’s Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol 40:531–544 [View Article][PubMed]
    [Google Scholar]
  25. Ikegami T., Won S., Peters C. J., Makino S. 2006; Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80:2933–2940 [View Article][PubMed]
    [Google Scholar]
  26. Johnson K. N., Zeddam J. L., Ball L. A. 2000; Characterization and construction of functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside Australasia. J Virol 74:5123–5132 [View Article][PubMed]
    [Google Scholar]
  27. Kascsak R. J., Lyons M. J. 1978; Bunyamwera virus. II. The generation and nature of defective interfering particles. Virology 89:539–546 [View Article][PubMed]
    [Google Scholar]
  28. Kim Y.-H., Kweon C.-H., Tark D.-S., Lim S. I., Yang D.-K., Hyun B.-H., Song J.-Y., Hur W., Park S. C. 2011; Development of inactivated trivalent vaccine for the teratogenic Aino, Akabane and Chuzan viruses. Biologicals 39:152–157 [View Article][PubMed]
    [Google Scholar]
  29. Lowen A. C., Elliott R. M. 2005; Mutational analyses of the nonconserved sequences in the Bunyamwera orthobunyavirus S segment untranslated regions. J Virol 79:12861–12870 [View Article][PubMed]
    [Google Scholar]
  30. Lowen A. C., Noonan C., McLees A., Elliott R. M. 2004; Efficient bunyavirus rescue from cloned cDNA. Virology 330:493–500 [View Article][PubMed]
    [Google Scholar]
  31. Lowen A. C., Boyd A., Fazakerley J. K., Elliott R. M. 2005; Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J Virol 79:6940–6946 [View Article][PubMed]
    [Google Scholar]
  32. Mazel-Sanchez B., Elliott R. M. 2012; Attenuation of bunyamwera orthobunyavirus replication by targeted mutagenesis of genomic untranslated regions and creation of viable viruses with minimal genome segments. J Virol 86:13672–13678 [View Article][PubMed]
    [Google Scholar]
  33. Mohamed M., McLees A., Elliott R. M. 2009; Viruses in the Anopheles A, Anopheles B, and Tete serogroups in the Orthobunyavirus genus (family Bunyaviridae) do not encode an NSs protein. J Virol 83:7612–7618 [View Article][PubMed]
    [Google Scholar]
  34. Ogawa Y., Sugiura K., Kato K., Tohya Y., Akashi H. 2007; Rescue of Akabane virus (family Bunyaviridae) entirely from cloned cDNAs by using RNA polymerase I. J Gen Virol 88:3385–3390 [View Article][PubMed]
    [Google Scholar]
  35. Plyusnin A., Elliott R. M. editors 2011 Bunyaviridae. Molecular and Cellular Biology Norfolk: Caister Academic Press;
    [Google Scholar]
  36. Plyusnin A., Beaty B. J., Elliott R. M., Goldbach R., Kormelink R., Lundkvist Å., Schmaljohn C. S., Tesh R. B. 2012; Bunyaviridae . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 725–741 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowits E. J. London: Elsevier Academic Press;
    [Google Scholar]
  37. Rasmussen L. D., Kristensen B., Kirkeby C., Rasmussen T. B., Belsham G. J., Bødker R., Bøtner A. 2012; Culicoids as vectors of Schmallenberg virus. Emerg Infect Dis 18:1204–1206 [View Article][PubMed]
    [Google Scholar]
  38. Ratinier M., Caporale M., Golder M., Franzoni G., Allan K., Nunes S. F., Armezzani A., Bayoumy A., Rixon F. other authors 2011; Identification and characterization of a novel non-structural protein of bluetongue virus. PLoS Pathog 7:e1002477 [View Article][PubMed]
    [Google Scholar]
  39. Szemiel A. M., Failloux A. B., Elliott R. M. 2012; Role of Bunyamwera orthobunyavirus NSs protein in infection of mosquito cells. PLoS Negl Trop Dis 6:e1823 [View Article][PubMed]
    [Google Scholar]
  40. Tarlinton R., Daly J., Dunham S., Kydd J. 2012; The challenge of Schmallenberg virus emergence in Europe. Vet J 194:10–18 [View Article][PubMed]
    [Google Scholar]
  41. van Knippenberg I., Carlton-Smith C., Elliott R. M. 2010; The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism. J Gen Virol 91:2002–2006 [View Article][PubMed]
    [Google Scholar]
  42. Volkmer N., Soares M. C., Rebello M. A. 1983; Autointerference of Marituba virus (Bunyaviridae) in mouse L cells by defective interfering particles. Intervirology 20:108–113 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049981-0
Loading
/content/journal/jgv/10.1099/vir.0.049981-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error