1887

Abstract

Recent studies have suggested that the small ubiquitin-related modifier (SUMO) conjugation pathway may play an important role in intrinsic antiviral resistance and thus for repression of herpesviral infections. In particular, it was shown that the herpes simplex virus type-1 regulatory protein ICP0 acts as a SUMO-targeted ubiquitin ligase (STUbL), inducing the widespread degradation of SUMO-conjugated proteins during infection. As the IE1 protein of human cytomegalovirus (HCMV) is known to mediate a de-SUMOylation of PML, we investigated whether HCMV uses a similar mechanism to counteract intrinsic antiviral resistance. We generated primary human fibroblasts stably expressing FLAG-SUMO-1 or FLAG-SUMO-3 and analysed the SUMOylation pattern after HCMV infection or isolated IE1 expression. However, Western blot experiments did not reveal a global loss of SUMO conjugates, either in HCMV-infected or in IE1-expressing cells, arguing against a function of IE1 as an STUbL. Interestingly, we observed that FLAG-SUMO-1 and FLAG-SUMO-3, subsequent to IE1-mediated promyelocytic leukemia protein (PML) de-SUMOylation and the consequent disruption of PML nuclear bodies, were recruited into viral replication compartments. This raised the question of whether FLAG-SUMO-1/3 might promote HCMV replication. Intriguingly, overexpression of FLAG-SUMO-1/3 enhanced accumulation of viral DNA, which correlated with an increase in viral replication and in virus particle release. Together, these data indicate that HCMV, in contrast to other herpesviruses, has evolved subtle mechanisms enabling it to utilize the SUMO conjugation pathway for its own benefit, resulting in an overall positive effect of SUMO conjugation for HCMV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051078-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1373.html?itemId=/content/journal/jgv/10.1099/vir.0.051078-0&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Hayward G. S. 1997; The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71:4599–4613[PubMed]
    [Google Scholar]
  2. Andreoni M., Faircloth M., Vugler L., Britt W. J. 1989; A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. J Virol Methods 23:157–167 [View Article][PubMed]
    [Google Scholar]
  3. Berndt A., Hofmann-Winkler H., Tavalai N., Hahn G., Stamminger T. 2009; Importance of covalent and noncovalent SUMO interactions with the major human cytomegalovirus transactivator IE2p86 for viral infection. J Virol 83:12881–12894 [View Article][PubMed]
    [Google Scholar]
  4. Boddy M. N., Howe K., Etkin L. D., Solomon E., Freemont P. S. 1996; PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982[PubMed]
    [Google Scholar]
  5. Boggio R., Chiocca S. 2006; Viruses and sumoylation: recent highlights. Curr Opin Microbiol 9:430–436 [View Article][PubMed]
    [Google Scholar]
  6. Boutell C., Cuchet-Lourenço D., Vanni E., Orr A., Glass M., McFarlane S., Everett R. D. 2011; A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog 7:e1002245 [View Article][PubMed]
    [Google Scholar]
  7. Da Silva-Ferrada E., Lopitz-Otsoa F., Lang V., Rodríguez M. S., Matthiesen R. 2012; Strategies to identify recognition signals and targets of SUMOylation. Biochem Res Int 2012:875148[PubMed] [CrossRef]
    [Google Scholar]
  8. Dinkel H., Michael S., Weatheritt R. J., Davey N. E., van Roey K., Altenberg G., Toedt G., Uyar B., Seiler M., Budd A., Jödicke L., Dammert M. A., Schroeter C., Hammer M., Schmidt T., Jehl P., McGuigan C., Dymecka M., Chica C., Luck Y., Via A., Chatr-Aryamontri A., Haslam N., Grebnev G., Edwards R. J., Steinmetz M. O., Meiselbach H., Diella F., Gibson J. F. 2012; ELM- the database of eukaryotic linear motifs. Nucl. Acids Res 40:D242–51[PubMed] [CrossRef]
    [Google Scholar]
  9. Elliott G., O’Hare P. 1999; Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol 73:4110–4119[PubMed]
    [Google Scholar]
  10. Everett R. D., Freemont P., Saitoh H., Dasso M., Orr A., Kathoria M., Parkinson J. 1998; The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591[PubMed]
    [Google Scholar]
  11. Hahn G., Khan H., Baldanti F., Koszinowski U. H., Revello M. G., Gerna G. 2002; The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 76:9551–9555 [View Article][PubMed]
    [Google Scholar]
  12. Hofmann H., Flöss S., Stamminger T. 2000; Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74:2510–2524 [View Article][PubMed]
    [Google Scholar]
  13. Huh Y. H., Kim Y. E., Kim E. T., Park J. J., Song M. J., Zhu H., Hayward G. S., Ahn J. H. 2008; Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO. J Virol 82:10444–10454 [View Article][PubMed]
    [Google Scholar]
  14. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T. H., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [View Article][PubMed]
    [Google Scholar]
  15. Johnson E. S. 2004; Protein modification by SUMO. Annu Rev Biochem 73:355–382 [View Article][PubMed]
    [Google Scholar]
  16. Kim Y. E., Lee J. H., Kim E. T., Shin H. J., Gu S. Y., Seol H. S., Ling P. D., Lee C. H., Ahn J. H. 2011; Human cytomegalovirus infection causes degradation of Sp100 proteins that suppress viral gene expression. J Virol 85:11928–11937 [View Article][PubMed]
    [Google Scholar]
  17. Korioth F., Maul G. G., Plachter B., Stamminger T., Frey J. 1996; The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229:155–158 [View Article][PubMed]
    [Google Scholar]
  18. Lee H. R., Ahn J. H. 2004; Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts. J Gen Virol 85:2149–2154 [View Article][PubMed]
    [Google Scholar]
  19. Lee H. R., Kim D. J., Lee J. M., Choi C. Y., Ahn B. Y., Hayward G. S., Ahn J. H. 2004; Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78:6527–6542 [View Article][PubMed]
    [Google Scholar]
  20. Lorz K., Hofmann H., Berndt A., Tavalai N., Mueller R., Schlötzer-Schrehardt U., Stamminger T. 2006; Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles. J Virol 80:5423–5434 [View Article][PubMed]
    [Google Scholar]
  21. Marschall M., Freitag M., Weiler S., Sorg G., Stamminger T. 2000; Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob Agents Chemother 44:1588–1597 [View Article][PubMed]
    [Google Scholar]
  22. Müller S., Dejean A. 1999; Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73:5137–5143[PubMed]
    [Google Scholar]
  23. Müller S., Hoege C., Pyrowolakis G., Jentsch S. 2001; SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210 [View Article][PubMed]
    [Google Scholar]
  24. Nevels M., Brune W., Shenk T. 2004; SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol 78:7803–7812 [View Article][PubMed]
    [Google Scholar]
  25. Shen T. H., Lin H. K., Scaglioni P. P., Yung T. M., Pandolfi P. P. 2006; The mechanisms of PML-nuclear body formation. Mol Cell 24:331–339 [View Article][PubMed]
    [Google Scholar]
  26. Sinigalia E., Alvisi G., Segré C. V., Mercorelli B., Muratore G., Winkler M., Hsiao H. H., Urlaub H., Ripalti A. other authors 2012; The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS ONE 7:e49630 [View Article][PubMed]
    [Google Scholar]
  27. Sinzger C., Hahn G., Digel M., Katona R., Sampaio K. L., Messerle M., Hengel H., Koszinowski U., Brune W., Adler B. 2008; Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368 [View Article][PubMed]
    [Google Scholar]
  28. Sourvinos G., Tavalai N., Berndt A., Spandidos D. A., Stamminger T. 2007; Recruitment of human cytomegalovirus immediate-early 2 protein onto parental viral genomes in association with ND10 in live-infected cells. J Virol 81:10123–10136 [View Article][PubMed]
    [Google Scholar]
  29. Tavalai N., Stamminger T. 2009; Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses 1:1240–1264 [View Article][PubMed]
    [Google Scholar]
  30. Tavalai N., Papior P., Rechter S., Leis M., Stamminger T. 2006; Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80:8006–8018 [View Article][PubMed]
    [Google Scholar]
  31. Tavalai N., Adler M., Scherer M., Riedl Y., Stamminger T. 2011; Evidence for a dual antiviral role of the major nuclear domain 10 component Sp100 during the immediate-early and late phases of the human cytomegalovirus replication cycle. J Virol 85:9447–9458 [View Article][PubMed]
    [Google Scholar]
  32. Van Damme E., Laukens K., Dang T. H., Van Ostade X. 2010; A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67 [View Article][PubMed]
    [Google Scholar]
  33. Wilkinson K. A., Henley J. M. 2010; Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428:133–145 [View Article][PubMed]
    [Google Scholar]
  34. Wimmer P., Schreiner S., Dobner T. 2012; Human pathogens and the host cell SUMOylation system. J Virol 86:642–654 [View Article][PubMed]
    [Google Scholar]
  35. Zhong S., Müller S., Ronchetti S., Freemont P. S., Dejean A., Pandolfi P. P. 2000; Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051078-0
Loading
/content/journal/jgv/10.1099/vir.0.051078-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error