1887

Abstract

The underlying mechanisms allowing (WNV) to replicate in a large variety of different arthropod, bird and mammal species are largely unknown but are believed to rely on highly conserved proteins relevant for viral entry and replication. Consistent with this, the integrin αvβ3 has been proposed lately to function as the cellular receptor for WNV. More recently published data, however, are not in line with this concept. Integrins are highly conserved among diverse taxa and are expressed by almost every cell type at high numbers. Our study was designed to clarify the involvement of integrins in WNV infection of cells. A cell culture model, based on wild-type and specific integrin knockout cell lines lacking the integrin subunits αv, β1 or β3, was used to investigate the susceptibility to WNV, and to evaluate binding and replication efficiencies of four distinct strains (New York 1999, Uganda 1937, Sarafend and Dakar). Though all cell lines were permissive, clear differences in replication efficiencies were observed. Rescue of the β3-integrin subunit resulted in enhanced WNV yields of up to 90 %, regardless of the virus strain used. Similar results were obtained for β1-expressing and non-expressing cells. Binding, however, was not affected by the expression of the integrins in question, and integrin blocking antibodies failed to have any effect. We conclude that integrins are involved in WNV infection but not at the level of binding to target cells.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052613-0
2013-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1723.html?itemId=/content/journal/jgv/10.1099/vir.0.052613-0&mimeType=html&fmt=ahah

References

  1. Bader B. L., Rayburn H., Crowley D., Hynes R. O. 1998; Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519 [View Article][PubMed]
    [Google Scholar]
  2. Baron W., Decker L., Colognato H., ffrench-Constant C. 2003; Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13:151–155 [View Article][PubMed]
    [Google Scholar]
  3. Bielefeldt-Ohmann H., Meyer M., Fitzpatrick D. R., Mackenzie J. S. 2001; Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res 73:81–89 [View Article][PubMed]
    [Google Scholar]
  4. Brinton M. A. 2001; Host factors involved in West Nile virus replication. Ann N Y Acad Sci 951:207–219 [View Article][PubMed]
    [Google Scholar]
  5. Brinton M. A. 2002; The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402 [View Article][PubMed]
    [Google Scholar]
  6. Caswell P. T., Vadrevu S., Norman J. C. 2009; Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853 [View Article][PubMed]
    [Google Scholar]
  7. Chu J. J., Ng M. L. 2004; Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem 279:54533–54541 [View Article][PubMed]
    [Google Scholar]
  8. Clark E. A., Brugge J. S. 1995; Integrins and signal transduction pathways: the road taken. Science 268:233–239 [View Article][PubMed]
    [Google Scholar]
  9. Dietrich G., Montenieri J. A., Panella N. A., Langevin S., Lasater S. E., Klenk K., Kile J. C., Komar N. 2005; Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis 5:288–292 [View Article][PubMed]
    [Google Scholar]
  10. Eiden M., Vina-Rodriguez A., Hoffmann B., Ziegler U., Groschup M. H. 2010; Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J Vet Diagn Invest 22:748–753 [View Article][PubMed]
    [Google Scholar]
  11. Gahmberg C. G., Fagerholm S. C., Nurmi S. M., Chavakis T., Marchesan S., Grönholm M. 2009; Regulation of integrin activity and signalling. Biochim Biophys Acta 1790:431–444 [View Article][PubMed]
    [Google Scholar]
  12. Gao S., Du J., Zhou J., Chang H., Xie Q. 2008; Integrin activation and viral infection. Virol Sin 23:1–7 [View Article]
    [Google Scholar]
  13. Gavrilovskaya I. N., Shepley M., Shaw R., Ginsberg M. H., Mackow E. R. 1998; beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95:7074–7079 [View Article][PubMed]
    [Google Scholar]
  14. Gavrilovskaya I. N., Brown E. J., Ginsberg M. H., Mackow E. R. 1999; Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol 73:3951–3959[PubMed]
    [Google Scholar]
  15. Giancotti F. G., Ruoslahti E. 1999; Integrin signaling. Science 285:1028–1033 [View Article][PubMed]
    [Google Scholar]
  16. Giancotti F. G., Tarone G. 2003; Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 19:173–206 [View Article][PubMed]
    [Google Scholar]
  17. Gianni T., Cerretani A., Dubois R., Salvioli S., Blystone S. S., Rey F., Campadelli-Fiume G. 2010a; Herpes simplex virus glycoproteins H/L bind to cells independently of αVβ3 integrin and inhibit virus entry, and their constitutive expression restricts infection. J Virol 84:4013–4025 [View Article][PubMed]
    [Google Scholar]
  18. Gianni T., Gatta V., Campadelli-Fiume G. 2010b; αVβ3 -integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. Proc Natl Acad Sci U S A 107:22260–22265 [View Article][PubMed]
    [Google Scholar]
  19. Heikkilä O., Susi P., Tevaluoto T., Härmä H., Marjomäki V., Hyypiä T., Kiljunen S. 2010; Internalization of coxsackievirus A9 is mediated by beta2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol 84:3666–3681 [View Article][PubMed]
    [Google Scholar]
  20. Hodivala-Dilke K. M., McHugh K. P., Tsakiris D. A., Rayburn H., Crowley D., Ullman-Culleré M., Ross F. P., Coller B. S., Teitelbaum S., Hynes R. O. 1999; Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238 [View Article][PubMed]
    [Google Scholar]
  21. Hung S. L., Lee P. L., Chen H. W., Chen L. K., Kao C. L., King C. C. 1999; Analysis of the steps involved in Dengue virus entry into host cells. Virology 257:156–167 [View Article][PubMed]
    [Google Scholar]
  22. Hurlbut H. S., Rizk F., Taylor R. M., Work T. H. 1956; A study of the ecology of West Nile virus in Egypt. Am J Trop Med Hyg 5:579–620[PubMed]
    [Google Scholar]
  23. Hynes R. O. 2002; Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687 [View Article][PubMed]
    [Google Scholar]
  24. Hynes R. O., Hodivala-Dilke K. M. 1999; Insights and questions arising from studies of a mouse model of Glanzmann thrombasthenia. Thromb Haemost 82:481–485[PubMed]
    [Google Scholar]
  25. Knudsen K. A., Damsky C. H., Buck C. A. 1982; Expression of adhesion-related membrane components in adherent versus nonadherent hamster melanoma cells. J Cell Biochem 18:157–167 [View Article][PubMed]
    [Google Scholar]
  26. Krauss K., Altevogt P. 1999; Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem 274:36921–36927 [View Article][PubMed]
    [Google Scholar]
  27. Kusano Y., Oguri K., Nagayasu Y., Munesue S., Ishihara M., Saiki I., Yonekura H., Yamamoto H., Okayama M. 2000; Participation of syndecan 2 in the induction of stress fiber formation in cooperation with integrin alpha5beta1: structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. Exp Cell Res 256:434–444 [View Article][PubMed]
    [Google Scholar]
  28. Li E., Brown S. L., Stupack D. G., Puente X. S., Cheresh D. A., Nemerow G. R. 2001; Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 75:5405–5409 [View Article][PubMed]
    [Google Scholar]
  29. Liu H., Chiou S. S., Chen W. J. 2004; Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. J Med Virol 72:618–624 [View Article][PubMed]
    [Google Scholar]
  30. Liu S., Shi-wen X., Blumbach K., Eastwood M., Denton C. P., Eckes B., Krieg T., Abraham D. J., Leask A. 2010; Expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. J Cell Sci 123:3674–3682 [View Article][PubMed]
    [Google Scholar]
  31. Marsh M., Helenius A. 1989; Virus entry into animal cells. Adv Virus Res 36:107–151 [View Article][PubMed]
    [Google Scholar]
  32. McCarty J. H., Monahan-Earley R. A., Brown L. F., Keller M., Gerhardt H., Rubin K., Shani M., Dvorak H. F., Wolburg H. other authors 2002; Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7677 [View Article][PubMed]
    [Google Scholar]
  33. Medigeshi G. R., Hirsch A. J., Streblow D. N., Nikolich-Zugich J., Nelson J. A. 2008; West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of αVβ3 integrin. J Virol 82:5212–5219 [View Article][PubMed]
    [Google Scholar]
  34. Mostashari F., Bunning M. L., Kitsutani P. T., Singer D. A., Nash D., Cooper M. J., Katz N., Liljebjelke K. A., Biggerstaff B. J. other authors 2001; Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358:261–264 [View Article][PubMed]
    [Google Scholar]
  35. Murgue B., Murri S., Zientara S., Durand B., Durand J. P., Zeller H. 2001; West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 7:692–696[PubMed] [CrossRef]
    [Google Scholar]
  36. Neff S., Sá-Carvalho D., Rieder E., Mason P. W., Blystone S. D., Brown E. J., Baxt B. 1998; Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J Virol 72:3587–3594[PubMed]
    [Google Scholar]
  37. Nelsen-Salz B., Eggers H. J., Zimmermann H. 1999; Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol 80:2311–2313[PubMed]
    [Google Scholar]
  38. Petersen L. R., Roehrig J. T. 2001; West Nile virus: a reemerging global pathogen. Emerg Infect Dis 7:611–614[PubMed] [CrossRef]
    [Google Scholar]
  39. Piali L., Hammel P., Uherek C., Bachmann F., Gisler R. H., Dunon D., Imhof B. A. 1995; CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451–460 [View Article][PubMed]
    [Google Scholar]
  40. Pietiäinen V., Marjomäki V., Upla P., Pelkmans L., Helenius A., Hyypiä T. 2004; Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell 15:4911–4925 [View Article][PubMed]
    [Google Scholar]
  41. Reynolds L. E., Wyder L., Lively J. C., Taverna D., Robinson S. D., Huang X., Sheppard D., Hynes R. O., Hodivala-Dilke K. M. 2002; Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34 [View Article][PubMed]
    [Google Scholar]
  42. Ridger V. C., Wagner B. E., Wallace W. A., Hellewell P. G. 2001; Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol 166:3484–3490[PubMed] [CrossRef]
    [Google Scholar]
  43. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. 1994; Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357–365 [View Article][PubMed]
    [Google Scholar]
  44. Sangaletti S., Di Carlo E., Gariboldi S., Miotti S., Cappetti B., Parenza M., Rumio C., Brekken R. A., Chiodoni C., Colombo M. P. 2008; Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:9050–9059 [View Article][PubMed]
    [Google Scholar]
  45. Scheirer C. J., Ray W. S., Hare N. 1976; The analysis of ranked data derived from completely randomized factorial designs. Biometrics 32:429–434 [View Article][PubMed]
    [Google Scholar]
  46. Schneider-Schaulies J. 2000; Cellular receptors for viruses: links to tropism and pathogenesis. J Gen Virol 81:1413–1429[PubMed]
    [Google Scholar]
  47. Thomas L., Chan P. W., Chang S., Damsky C. 1993; 5-Bromo-2-deoxyuridine regulates invasiveness and expression of integrins and matrix-degrading proteinases in a differentiated hamster melanoma cell. J Cell Sci 105:191–201[PubMed]
    [Google Scholar]
  48. Triantafilou K., Takada Y., Triantafilou M. 2001; Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 21:311–322 [View Article][PubMed]
    [Google Scholar]
  49. van der Meulen K. M., Pensaert M. B., Nauwynck H. J. 2005; West Nile virus in the vertebrate world. Arch Virol 150:637–657 [View Article][PubMed]
    [Google Scholar]
  50. Walker J. L., Fournier A. K., Assoian R. K. 2005; Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev 16:395–405 [View Article][PubMed]
    [Google Scholar]
  51. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [View Article][PubMed]
    [Google Scholar]
  52. Work T. H., Hurlbut H. S., Taylor R. M. 1955; Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am J Trop Med Hyg 4:872–888[PubMed]
    [Google Scholar]
  53. Yamada K. M., Miyamoto S. 1995; Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7:681–689 [View Article][PubMed]
    [Google Scholar]
  54. Zhang J. L., Wang J. L., Gao N., Chen Z. T., Tian Y. P., An J. 2007; Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun 356:763–768 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052613-0
Loading
/content/journal/jgv/10.1099/vir.0.052613-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error