1887

Abstract

Replication initiator protein (Rep) is indispensable for rolling-circle replication of geminiviruses, a group of plant-infecting circular ssDNA viruses. However, the mechanism of DNA unwinding by circular ssDNA virus-encoded helicases is unknown. To understand geminivirus Rep function, we compared the sequence and secondary structure of Rep with those of bovine papillomavirus E1 and employed charged residue-to-alanine scanning mutagenesis to generate a set of single-substitution mutants in Walker A (K227), in Walker B (D261, 262), and within or adjacent to the B′ motif (K272, K286 and K289). All mutants were asymptomatic and viral accumulation could not be detected by Southern blotting in both tomato and plants. Furthermore, the K272 and K289 mutants were deficient in DNA binding and unwinding. Biochemical studies and modelling data based on comparisons with the known structures of SF3 helicases suggest that the conserved lysine (K289) located in a predicted β-hairpin loop may interact with ssDNA, while lysine 272 in the B′ motif (K272) located on the outer surface of the protein is presumably involved in coupling ATP-induced conformational changes to DNA binding. To the best of our knowledge, this is the first time that the roles of the B′ motif and the adjacent β-hairpin loop in geminivirus replication have been elucidated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064923-0
2014-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/7/1591.html?itemId=/content/journal/jgv/10.1099/vir.0.064923-0&mimeType=html&fmt=ahah

References

  1. Attwood T. K., Coletta A., Muirhead G., Pavlopoulou A., Philippou P. B., Popov I., Romá-Mateo C., Theodosiou A., Mitchell A. L. 2012; The PRINTS database: a fine-grained protein sequence annotation and analysis resource–its status in 2012. Database (Oxford) 2012:bas019 [View Article][PubMed]
    [Google Scholar]
  2. Case D. A., Darden T. A., Cheatham T. E., Simmerling C. L., Wang J., Duke R. E., Luo R., Merz K. M., Pearlman D. A.other authors 2006 Amber 9 User’s Manual San Francisco: University of California;
    [Google Scholar]
  3. Castella S., Bingham G., Sanders C. M. 2006; Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res 34:3008–3019 [View Article][PubMed]
    [Google Scholar]
  4. Chakraborty S. 2008; Tomato leaf curl viruses from India. In Encyclopedia of Virology vol. 5 pp. 124–133 Oxford: Elsevier; [View Article]
    [Google Scholar]
  5. Chakraborty S., Pandey P. K., Banerjee M. K., Kalloo G., Fauquet C. M. 2003; Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathology 93:1485–1495 [View Article][PubMed]
    [Google Scholar]
  6. Chakraborty S., Vanitharani R., Chattopadhyay B., Fauquet C. M. 2008; Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of begomovirus associated with severe tomato leaf curl disease in India. J Gen Virol 89:818–828 [View Article][PubMed]
    [Google Scholar]
  7. Chatterji A., Chatterji U., Beachy R. N., Fauquet C. M. 2000; Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of tomato leaf curl virus-New Delhi. Virology 273:341–350 [View Article][PubMed]
    [Google Scholar]
  8. Choudhury N. R., Malik P. S., Singh D. K., Islam M. N., Kaliappan K., Mukherjee S. K. 2006; The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase. Nucleic Acids Res 34:6362–6377 [View Article][PubMed]
    [Google Scholar]
  9. Clérot D., Bernardi F. 2006; DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol 80:11322–11330 [View Article][PubMed]
    [Google Scholar]
  10. Desbiez C., David C., Mettouchi A., Laufs J., Gronenborn B. 1995; Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci U S A 92:5640–5644 [View Article][PubMed]
    [Google Scholar]
  11. Enemark E. J., Joshua-Tor L. 2006; Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–275 [View Article][PubMed]
    [Google Scholar]
  12. Erzberger J. P., Berger J. M. 2006; Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114 [View Article][PubMed]
    [Google Scholar]
  13. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M. Y., Pieper U., Sali A. 2006; Comparative Protein Structure Modeling Using Modeller.. Curr Protoc Bioinformatics 15:5.6.1–5.6.30
    [Google Scholar]
  14. Fauquet C. M., Bisaro D. M., Briddon R. W., Brown J. K., Harrison B. D., Rybicki E. P., Stenger D. C., Stanley J. 2003; Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148:405–421 [View Article][PubMed]
    [Google Scholar]
  15. Fontes E. P., Luckow V. A., Hanley-Bowdoin L. 1992; A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4:597–608 [View Article][PubMed]
    [Google Scholar]
  16. Fouts E. T., Yu X., Egelman E. H., Botchan M. R. 1999; Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J Biol Chem 274:4447–4458 [View Article][PubMed]
    [Google Scholar]
  17. Gai D., Zhao R., Li D., Finkielstein C. V., Chen X. S. 2004; Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119:47–60 [View Article][PubMed]
    [Google Scholar]
  18. Greenfield N. J. 2006; Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890 [View Article][PubMed]
    [Google Scholar]
  19. Hickman A. B., Dyda F. 2005; Binding and unwinding: SF3 viral helicases. Curr Opin Struct Biol 15:77–85 [View Article][PubMed]
    [Google Scholar]
  20. James J. A., Escalante C. R., Yoon-Robarts M., Edwards T. A., Linden R. M., Aggarwal A. K. 2003; Crystal structure of the SF3 helicase from adeno-associated virus type 2. Structure 11:1025–1035 [View Article][PubMed]
    [Google Scholar]
  21. Keideiling T. 1996; Vibrational circular dichroism application to conformational analysis of biomolecules. In Circular Dichroism and the Conformational Analysis of Biomolecules pp. 555–598 Edited by Fasman G. D. New York: Plenum Press; [View Article]
    [Google Scholar]
  22. Kelley L. A., Sternberg M. J. 2009; Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371 [View Article][PubMed]
    [Google Scholar]
  23. Koonin E. V. 1993; A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 21:2541–2547 [View Article][PubMed]
    [Google Scholar]
  24. Kumari P., Singh A. K., Sharma V. K., Chattopadhyay B., Chakraborty S. 2011; A novel recombinant tomato-infecting begomovirus capable of transcomplementing heterologous DNA-B components. Arch Virol 156:769–783 [View Article][PubMed]
    [Google Scholar]
  25. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  26. Laskowski R. A., Macarthur M. W., Moss D. S., Thornton J. M. 1993; PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291 [View Article]
    [Google Scholar]
  27. Li D., Zhao R., Lilyestrom W., Gai D., Zhang R., DeCaprio J. A., Fanning E., Jochimiak A., Szakonyi G., Chen X. S. 2003; Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423:512–518 [View Article][PubMed]
    [Google Scholar]
  28. Maggin J. E., James J. A., Chappie J. S., Dyda F., Hickman A. B. 2012; The amino acid linker between the endonuclease and helicase domains of adeno-associated virus type 5 Rep plays a critical role in DNA-dependent oligomerization. J Virol 86:3337–3346 [View Article][PubMed]
    [Google Scholar]
  29. Nash T. E., Dallas M. B., Reyes M. I., Buhrman G. K., Ascencio-Ibañez J. T., Hanley-Bowdoin L. 2011; Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol 85:1182–1192 [View Article][PubMed]
    [Google Scholar]
  30. Nongkhlaw M., Dutta P., Hockensmith J. W., Komath S. S., Muthuswami R. 2009; Elucidating the mechanism of DNA-dependent ATP hydrolysis mediated by DNA-dependent ATPase A, a member of the SWI2/SNF2 protein family. Nucleic Acids Res 37:3332–3341 [View Article][PubMed]
    [Google Scholar]
  31. Orozco B. M., Miller A. B., Settlage S. B., Hanley-Bowdoin L. 1997; Functional domains of a geminivirus replication protein. J Biol Chem 272:9840–9846 [View Article][PubMed]
    [Google Scholar]
  32. San Martín M. C., Gruss C., Carazo J. M. 1997; Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. J Mol Biol 268:15–20 [View Article][PubMed]
    [Google Scholar]
  33. Shen J., Gai D., Patrick A., Greenleaf W. B., Chen X. S. 2005; The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci U S A 102:11248–11253 [View Article][PubMed]
    [Google Scholar]
  34. Sigrist C. J., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P. 2002; PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3:265–274 [View Article][PubMed]
    [Google Scholar]
  35. Singleton M. R., Sawaya M. R., Ellenberger T., Wigley D. B. 2000; Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589–600 [View Article][PubMed]
    [Google Scholar]
  36. Stanley J. 1983; Infectivity of the cloned geminivirus genome requires sequences from both DNAs. Nature 305:643–645 [View Article]
    [Google Scholar]
  37. Story R. M., Weber I. T., Steitz T. A. 1992; The structure of the E. coli recA protein monomer and polymer. Nature 355:318–325 [View Article][PubMed]
    [Google Scholar]
  38. Yoon-Robarts M., Blouin A. G., Bleker S., Kleinschmidt J. A., Aggarwal A. K., Escalante C. R., Linden R. M. 2004; Residues within the B′ motif are critical for DNA binding by the superfamily 3 helicase Rep40 of adeno-associated virus type 2. J Biol Chem 279:50472–50481 [View Article][PubMed]
    [Google Scholar]
  39. Zarate-Perez F., Bardelli M., Burgner J. W. II, Villamil-Jarauta M., Das K., Kekilli D., Mansilla-Soto J., Linden R. M., Escalante C. R. 2012; The interdomain linker of AAV-2 Rep68 is an integral part of its oligomerization domain: role of a conserved SF3 helicase residue in oligomerization. PLoS Pathog 8:e1002764 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064923-0
Loading
/content/journal/jgv/10.1099/vir.0.064923-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error