1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) Tat and human Cyclin T1 form a complex and together recognize the viral TAR RNA element with specificity. Using HIV-1/equine infectious anaemia virus TAR chimeras, we show that in addition to the well-characterized interaction with the bulge, Tat recognizes the distal stem and the loop of TAR. These data support previously proposed, but unproven, molecular models.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18645-0
2003-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/3/vir840603.html?itemId=/content/journal/jgv/10.1099/vir.0.18645-0&mimeType=html&fmt=ahah

References

  1. Albrecht T. R., Lund L. H., Garcia-Blanco M. A. 2000; Canine cyclin T1 rescues equine infectious anemia virus Tat trans-activation in human cells. Virology 268:7–11
    [Google Scholar]
  2. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R. 1998; Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17:7056–7065
    [Google Scholar]
  3. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R. 1999; Highly divergent lentiviral Tat proteins activate viral gene expression by a common mechanism. Mol Cell Biol 19:4592–4599
    [Google Scholar]
  4. Carroll R., Peterlin B. M., Derse D. 1992; Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous trans activators. J Virol 66:2000–2007
    [Google Scholar]
  5. Carvalho M., Derse D. 1991; Mutational analysis of the equine infectious anemia virus Tat-responsive element. J Virol 65:3468–3474
    [Google Scholar]
  6. Churcher M. J., Lamont C., Hamy F., Dingwall C., Green S. M., Lowe A. D., Butler J. G., Gait M. J., Karn J. 1993; High affinity binding of TAR RNA by the human immunodeficiency virus type-1 Tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230:90–110
    [Google Scholar]
  7. Colvin R. A., Garcia-Blanco M. A. 1992; Unusual structure of the human immunodeficiency virus type 1 trans-activation response element. J Virol 66:930–935
    [Google Scholar]
  8. Colvin R. A., White S. W., Garcia-Blanco M. A., Hoffman D. W. 1993; Structural features of an RNA containing the CUGGGA loop of the human immunodeficiency virus type 1 trans-activation response element. Biochemistry 32:1105–1112
    [Google Scholar]
  9. Cullen B. R. 1998; HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692
    [Google Scholar]
  10. Farrow M. A., Aboul-ela F., Owen D., Karpeisky A., Beigelman L., Gait M. J. 1998; Site-specific cross-linking of amino acids in the basic region of human immunodeficiency virus type 1 Tat peptide to chemically modified TAR RNA duplexes. Biochemistry 37:3096–3108
    [Google Scholar]
  11. Feng S., Holland E. C. 1988; HIV-1 Tat trans-activation requires the loop sequence within Tar. Nature 334:165–167
    [Google Scholar]
  12. Garber M. E., Wei P., KewalRamani V. N., Mayall T. P., Herrmann C. H., Rice A. P., Littman D. R., Jones K. A. 1998a; The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes & Dev 12:3512–3527
    [Google Scholar]
  13. Garber M. E., Wei P., Jones K. A. 1998b; HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harbor Symp Quant Biol 63:371–380
    [Google Scholar]
  14. Hoffman D. W., White S. W. 1995; NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. Nucleic Acids Res 23:4058–4065
    [Google Scholar]
  15. Hoffman D. W., Colvin R. A., Garcia-Blanco M. A., White S. W. 1993; Structural features of the trans-activation response RNA element of equine infectious anemia virus. Biochemistry 32:1096–1104
    [Google Scholar]
  16. Huq I., Rana T. M. 1997; Probing the proximity of the core domain of an HIV-1 Tat fragment in a Tat–TAR complex by affinity cleaving. Biochemistry 36:12592–12599
    [Google Scholar]
  17. Loret E. P., Georgel P., Johnson W. C. Jr, Ho P. S. 1992; Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. Proc Natl Acad Sci U S A 89:9734–9738
    [Google Scholar]
  18. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. 1995; Solution structure of a bovine immunodeficiency virus Tat–TAR peptide–RNA complex. Science 270:1200–1203
    [Google Scholar]
  19. Suñe C., Garcia-Blanco M. A. 1999; Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 19:4719–4728
    [Google Scholar]
  20. Taube R., Fujinaga K., Irwin D., Wimmer J., Geyer M., Peterlin B. M. 2000; Interactions between equine cyclin T1, Tat, and TAR are disrupted by a leucine-to-valine substitution found in human cyclin T1. J Virol 74:892–898
    [Google Scholar]
  21. Wang Z., Huq I., Rana T. M. 1999; Proximity of a Tat peptide to the HIV-1 TAR RNA loop region determined by site-specific photo-cross-linking. Bioconjug Chem 10:512–519
    [Google Scholar]
  22. Wei P., Garber M. E., Fang S., Fischer W. H., Jones K. A. 1998; A novel CDK9 associated c-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462
    [Google Scholar]
  23. Zhang J., Tamilarasu N., Hwang S., Garber M. E., Huq I., Jones K. A., Rana T. M. 2000; HIV-1 TAR RNA enhances the interaction between Tat and cylin T1. J Biol Chem 275:3431–3439
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18645-0
Loading
/content/journal/jgv/10.1099/vir.0.18645-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error