1887

Abstract

The N-terminal part of VP1 was sequenced for 43 enterovirus isolates that could not initially be neutralized with LBM pools or in-house antisera. Most isolates were found to belong to human enterovirus type A (HEV-A) and HEV-B (18 isolates of each). All HEV-A isolates could be typed by sequencing, with CV (coxsackievirus)-A16 and EV (enterovirus)-71 being dominant (nine and seven isolates, respectively). These types thus seem to have diverged more from their prototypes than the other types. Among the HEV-B isolates, E-18 dominated with five isolates that became typable after filtration. The virus type obtained by molecular typing was verified for 28 of the other patient isolates by neutralization using high-titre monovalent antisera or LBM pools. Twenty-two of the other 30 ‘untypable’ isolates had substitutions in the VP1 protein within or close to the BC loop. Two closely related HEV-B isolates diverged by 19·4 % from E-15, the most similar prototype. Two non-neutralizable HEV-C isolates split off from the CV-A13/CV-A18 branch, from which they diverged by 15·7–18·2 %. Three of the six non-neutralizable isolates, W553-130/99, W543-122/99 and W137-126/99, diverged by >24·2 % from the most similar prototype in the compared region. The complete VP1 was therefore sequenced and found to diverge by >29 % from all prototypes and by >28 % from each other. Strains similar to W553-130/99 that have been identified in the USA are tentatively designated EV-74. The two other isolates fulfil the molecular criterion for being new types. Since strains designated EV-75 and EV-76 have been identified in the USA, we have proposed the tentative designations EV-77 and EV-78 for these two new members of HEV-B.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18647-0
2003-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840827.html?itemId=/content/journal/jgv/10.1099/vir.0.18647-0&mimeType=html&fmt=ahah

References

  1. Caro V., Guillot S., Delpeyroux F., Crainic R. 2001; Molecular strategy for serotyping of human enteroviruses. J Gen Virol 82:79–91
    [Google Scholar]
  2. Casas I., Palacios G. F., Trallero G., Cisterna D., Freire M. C., Tenorio A. 2001; Molecular characterization of human enteroviruses in clinical samples: comparison between VP1, VP1, and RNA polymerase regions using RT nested PCR assays and direct sequencing. J Med Virol 65:138–148
    [Google Scholar]
  3. Dahllund L., Nissinen L., Pulli T., Hyttinen V.-P., Stanway G., Hyypiä T. 1995; The genome of echovirus 11. Virus Res 35:215–222
    [Google Scholar]
  4. Felsenstein J. 1993 PHYLIP: phylogeny inference package, version 3.52c University of Washington; Seattle, Washington:
    [Google Scholar]
  5. Grist N. R., Bell E. J., Assaad F. 1978; Enterovirus in human disease. Prog Med Virol 24:114–157
    [Google Scholar]
  6. Huttunen P., Santti J., Pulli T., Hyypiä T. 1996; The major echovirus group is genetically coherent and related to coxsackie B viruses. J Gen Virol 77:715–725
    [Google Scholar]
  7. King A. M. Q., Brown F., Christian P. 8 other authors 2000; Picornaviridae . In Virus Taxonomy . Seventh Report of the International Committee for the Taxonomy of Viruses . pp  657–673 Edited by Van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L. 9 others San Diego: Academic Press;
  8. Kumar S., Tamura K., Nei M. 1993 MEGA: Molecular Evolutionary Genetics Analysis version 1.02 Pennsylvania State University; Pennsylvania:
    [Google Scholar]
  9. Lenz K. N., Smith A. D., Geisler S. C. 9 other authors 1997; Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of the three poliovirus serotypes. Structure 5:961–978
    [Google Scholar]
  10. McPhee F., Zell R., Reimann B. Y., Hofschneider P. H., Kandolf R. 1994; Characterization of the N-terminal part of the neutralizing antigenic site I of coxsackievirus B4 by mutation analysis of antigen chimeras. Virus Res 34:139–151
    [Google Scholar]
  11. Mateu M. G. 1995; Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res 38:1–24
    [Google Scholar]
  12. Melnick J. L. 1997; Enteroviruses, polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology pp  655–712 Edited by Fields B. N., Knipe D. N., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  13. Melnick J. L., Tagaya I., von Magnus H. 1974; Enteroviruses 69, 70, and 71. Intervirol 4:369–370
    [Google Scholar]
  14. Modlin J. F. 1995; Coxsackieviruses, echoviruses and newer enteroviruses. In Principles and Practice of Infectious Diseases , 4th edn. pp  1620–1632 Edited by Mandell G. L., Bennet J. E., Dolin R. New York: Churchill Livingstone;
    [Google Scholar]
  15. Muckelbauer J. K., Kremer M., Minor I., Diana G., Dutko F. J., Groarke J., Pevear D. C., Rossmann M. G. 1995; The structure of coxsackievirus B3 at 3·5 Å resolution. Structure 3:653–667
    [Google Scholar]
  16. Norder H., Bjerregaard L., Magnius L. 2001; Homotypic echoviruses share aminoterminal VP1 sequence homology applicable for typing. J Med Virol 63:35–44
    [Google Scholar]
  17. Norder H., Bjerregaard L., Magnius L. 2002; Open reading frame sequence of an Asian enterovirus 73 strain reveals that the prototype from California is recombinant. J Gen Virol 83:1721–1728
    [Google Scholar]
  18. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999a; Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37:1288–1293
    [Google Scholar]
  19. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999b; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948
    [Google Scholar]
  20. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of ‘untypeable’ enteroviruses. J Clin Microbiol 38:1170–1174
    [Google Scholar]
  21. Oberste M. S., Schnurr D., Maher K., al-Busaidy S., Pallansch M. A. 2001; Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82:409–416
    [Google Scholar]
  22. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. J Gen Virol 77:1699–1717
    [Google Scholar]
  23. Pulli T., Koskimies P., Hyypiä T. 1995; Molecular comparison of coxsackie A virus serotypes. Virology 212:30–38
    [Google Scholar]
  24. Pulli T., Roivainen M., Hovi T., Hyypiä T. 1998; Induction of neutralizing antibodies by synthetic peptides representing the C terminus of coxsackievirus A9 capsid protein VP1. J Gen Virol 79:2249–2253
    [Google Scholar]
  25. Reimann B.-Y., Zell R., Kandolf R. 1991; Mapping of a neutralizing antigenic site of coxsackie B4 by construction of an antigen chimera. J Virol 65:3475–3480
    [Google Scholar]
  26. Singh S., Chow V. T. K., Chan K. P., Ling A. E., Poh C. L. 2000; RT-PCR, nucleotide, amino acid and phylogenetic analyses of enterovirus 71 strains from Asia. J Virol Methods 88:193–204
    [Google Scholar]
  27. Wallis A., Melnick J. L. 1967; Virus aggregation as the cause of non-neutralizable persistent fraction. J Virol 1:478–488
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18647-0
Loading
/content/journal/jgv/10.1099/vir.0.18647-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error