1887

Abstract

SAT 2 is the serotype most often associated with outbreaks of foot-and-mouth disease (FMD) in livestock in southern and western Africa and is the only SAT type to have been recorded outside the African continent in the last decade. Its epidemiology is complicated by the presence of African buffalo (), which play an important role in virus maintenance and transmission. To assess the level of genetic complexity of this serotype among viruses associated with both domestic livestock and wildlife, complete VP1 gene sequences of 53 viruses from 17 countries and three different host species were analysed. Phylogenetic analysis revealed eleven virus lineages, differing from each other by at least 20 % in pairwise nucleotide comparisons, four of which fall within the southern African region, two in West Africa and the remaining five in central and East Africa. No evidence of recombination between these lineages was detected, and thus we conclude that these are independently evolving virus lineages which occur primarily in discrete geographical localities in accordance with the FMD virus topotype concept. Applied to the whole phylogeny, rates of nucleotide substitution are significantly different between topotypes, but most individual topotypes evolve in accordance with a molecular clock at an average rate of approximately 0·002 substitutions per site per year. This study provides an indication of the intratypic complexity of the SAT 2 serotype at the continental level and emphasizes the value of molecular characterization of diverse FMD field strains for tracing the origin of outbreaks.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18859-0
2003-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841595.html?itemId=/content/journal/jgv/10.1099/vir.0.18859-0&mimeType=html&fmt=ahah

References

  1. Acharya A., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1990; The structure of foot-and-mouth disease virus: implications for its physical and biological properties. Vet Microbiol 23:21–34
    [Google Scholar]
  2. Araújo J. P. Jr, Montassier H. J., Pinto A. A. 2002; Extensive antigenic and genetic variation among foot-and-mouth disease type A viruses isolated from the 1994 and 1995 foci in São Paulo, Brazil. Vet Microbiol 84:15–27
    [Google Scholar]
  3. Bastos A. D. S. 1998; Detection and characterization of foot-and-mouth disease virus in sub-Saharan Africa. Onderstepoort J Vet Res 65:37–47
    [Google Scholar]
  4. Bastos A. D. S. 2001; Molecular epidemiology and diagnosis of SAT type foot-and-mouth disease in southern Africa . PhD thesis University of Pretoria, South Africa;
  5. Bastos A. D. S., Boshoff C. I., Keet D. F., Bengis R. G., Thomson G. R. 2000; Natural transmission of foot-and-mouth disease virus between African buffalo ( Syncerus caffer ) and impala ( Aepyceros melampus ) in the Kruger National Park, South Africa. Epidemiol Infect 124:591–598
    [Google Scholar]
  6. Bastos A. D. S., Haydon D. T., Forsberg R., Knowles N. J., Anderson E. C., Bengis R. G., Nel L. H., Thomson G. R. 2001; Genetic heterogeneity of SAT-1 type foot-and-mouth disease viruses in southern Africa. Arch Virol 146:1537–1551
    [Google Scholar]
  7. Beck E., Strohmaier K. 1987; Subtyping of European FMDV outbreak strains by nucleotide sequence determination. J Virol 61:1621–1629
    [Google Scholar]
  8. Boom R., Sol C. J., Salimans M. M. M., Jansen C. L., Wertheim-van Dillen P. M. E., van der Noordaa J. 1990; Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503
    [Google Scholar]
  9. Brooksby J. B. 1972; Epizootiology of foot-and-mouth disease in developing countries. World Anim Rev 3:10–13
    [Google Scholar]
  10. Condy J. B., Hedger R. S., Hamblin C., Barnett I. T. R. 1985; The duration of the foot-and-mouth disease carrier state in African buffalo (i) in the individual animal and (ii) in a free-living herd. Comp Immunol Microbiol Infect Dis 8:259–265
    [Google Scholar]
  11. Crowther J. R., Rowe C. A., Butcher R. 1993; Characterization of monoclonal antibodies against a type SAT-2 foot-and-mouth disease virus. Epidemiol Infect 111:391–406
    [Google Scholar]
  12. Dawe P. S., Flanagan F. O., Madekurozwa R. L., Sorenson K. J., Anderson E. C., Foggin C. M., Ferris N. P., Knowles N. J. 1994a; Natural transmission of foot-and-mouth disease from African buffalo ( Syncerus caffer ) to cattle in a wildlife area of Zimbabwe. Vet Rec 134:230–232
    [Google Scholar]
  13. Dawe P. S., Sorensen K., Ferris N. P., Barnett I. T. R., Armstrong R. M., Knowles N. J. 1994b; Experimental transmission of foot-and-mouth disease virus from carrier African buffalo ( Syncerus caffer ) to cattle in Zimbabwe. Vet Rec 134:211–215
    [Google Scholar]
  14. Esterhuysen J. J. 1994 The antigenic variation of foot-and-mouth disease viruses and its significance in the epidemiology of the disease in southern Africa MSc dissertation University of Pretoria, South Africa;
  15. Fares M. A., Moya A., Escarmis C., Baranowski E., Domingo E., Barrio E. 2001; Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol Biol Evol 18:10–21
    [Google Scholar]
  16. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  17. Ferris N. P., Donaldson A. I. 1992; The World Reference Laboratory for foot-and-mouth disease: a review of thirty-three years of activity (1958–1991. Rev Sci Tech 11:657–684
    [Google Scholar]
  18. Grassly N. C., Holmes E. C. 1997; A likelihood method for the detection of selection and recombination using nucleotide sequences. Mol Biol Evol 14:239–247
    [Google Scholar]
  19. Harley E. H. 2001 dapsa . DNA and protein sequence analysis , version 4.91, Department of Chemical Pathology University of Cape Town, South Africa;
    [Google Scholar]
  20. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21:160–174
    [Google Scholar]
  21. Haydon D. T., Bastos A. D., Knowles N. J., Samuel A. R. 2001a; Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 137:7–15
    [Google Scholar]
  22. Haydon D. T., Samuel A. R., Knowles N. J. 2001b; The generation and persistence of genetic variation in foot-and-mouth disease virus. Prev Vet Med 51:111–124
    [Google Scholar]
  23. Hunter P. 1998; Vaccination as a means of control of foot-and-mouth disease in sub-Saharan Africa. Vaccine 16:261–264
    [Google Scholar]
  24. Hunter P., Bastos A. D. S., Esterhuysen J. J., van Vuuren C. de W. J. 1996; Appropriate foot-and-mouth disease vaccines for southern Africa. All Africa Conference on Animal Agriculture, Pretoria, South Africa 2.2.7:1–4
    [Google Scholar]
  25. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165
    [Google Scholar]
  26. Keet D. F., Hunter P., Bengis R. G., Bastos A. D., Thomson G. R. 1996; The 1992 foot-and-mouth disease epizootic in the Kruger National Park. J South African Vet Assoc 67:83–87
    [Google Scholar]
  27. Kitching R. P. 1998; A recent history of foot-and-mouth disease. J Comp Pathol 118:89–108
    [Google Scholar]
  28. Knowles N. J., Samuel A. R. 2003; Molecular epidemiology of foot-and-mouth disease virus. Virus Res 91:65–80
    [Google Scholar]
  29. Knowles N. J., Ansell D. M., Samuel A. R. 1998; Molecular comparison of recent foot-and-mouth disease type A viruses from West Africa with historical and reference strains. Paper presented to the session of the research group of the standing technical committee of the European Commission for the control of foot-and-mouth disease, Pirbright, UK, 14–18 September pp  1–6
    [Google Scholar]
  30. Korber B., Theiler J., Wolinsky S. 1998; Limitations of a molecular clock applied to considerations of the origin of HIV-1. Science 280:1868–1871
    [Google Scholar]
  31. Martinez M. A., Dopazo J., Hernandez J., Mateu M. G., Sobrino F., Domingo E., Knowles N. J. 1992; Evolution of capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades. J Virol 66:3557–3565
    [Google Scholar]
  32. Mateu M. G., Valero M. L., Andreu D., Domingo E. 1996; Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem 271:12814–12819
    [Google Scholar]
  33. Mweene A. S., Pandey G. S., Sinyangwe P., Nambota A., Samui K., Kida H. 1996; Viral diseases of livestock in Zambia. Jpn J Vet Res 44:89–105
    [Google Scholar]
  34. Ndiritu C. G. 1984; Foot and mouth disease virus antigenic variation and its implication on vaccines. Kenya Vet 8:14–19
    [Google Scholar]
  35. Ndiritu C. G., Ouldridge E. J., Head M., Rweyemamu M. M. 1983; A serological evaluation of 1979–1982 Kenyan foot-and-mouth disease type SAT 2 viruses. J Hyg 91:335–341
    [Google Scholar]
  36. Rambaut A. 2000; Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399
    [Google Scholar]
  37. Reid S. M., Ferris N. P., Hutchings G. H., De Clercq K., Newman B. J., Knowles N. J., Samuel A. R. 2001; Diagnosis of foot-and-mouth disease by RT-PCR: use of phylogenetic data to evaluate primers for the typing of viral RNA in clinical samples. Arch Virol 146:2421–2434
    [Google Scholar]
  38. Rozas J., Rozas R. 1999; DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175
    [Google Scholar]
  39. Rweyemamu M. M., Pay T. W. F., Parker M. J. 1977; Serological differentiation of foot-and-mouth disease virus strains in relation to selection of suitable vaccine viruses. Dev Biol Stand 35:205–214
    [Google Scholar]
  40. Samuel A. R., Knowles N. J. 2001a; Foot-and-mouth disease type O viruses exhibit genetically and geographically distinct evolutionary lineages (topotypes). J Gen Virol 82:609–621
    [Google Scholar]
  41. Samuel A. R., Knowles N. J. 2001b; Foot-and-mouth disease virus: cause of the recent crisis for the UK livestock industry. Trends Genet 17:421–424
    [Google Scholar]
  42. Sangaré O. 2002; Molecular epidemiology of foot-and-mouth disease virus in West Africa . PhD thesis University of Pretoria, Pretoria, South Africa;
  43. Sangaré O., Bastos A. D. S., Marquardt O., Venter E. H., Vosloo W., Thomson G. R. 2001; Molecular epidemiology of serotype O foot-and-mouth disease virus with emphasis on West and South Africa. Virus Genes 22:345–351
    [Google Scholar]
  44. Sobrino F., Saíz M., Jiménez-Clavero Núñez J. I., Rosas M. F., Baranowski E., Ley V. 2001; Foot-and-mouth disease virus: a long known virus, but current threat. Vet Res 32:1–30
    [Google Scholar]
  45. Swofford D. L. 2001; paup*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4:0b8 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  46. Thomson G. R. 1994; Foot-and-mouth disease. In Infectious Diseases of Livestock with Special Reference to Southern Africa . pp  825–952 Edited by Coetzer J. A. W., Thomson G. R., Tustin R. C. Cape Town: Oxford University Press;
  47. Thomson G. R. 1996; The role of carrier animals in the transmission of foot and mouth disease. O.I.E . Comprehensive Reports on Technical Items Presented to the International Committee or to Regional Commissions pp  87–103
    [Google Scholar]
  48. van Rensburg H. G., Nel L. H. 1999; Characterization of the structural-protein-coding region of SAT2 type foot-and-mouth disease virus. Virus Genes 19:229–233
    [Google Scholar]
  49. Vosloo W., Kirkbride E., Bengis R. G., Keet D. F., Thomson G. R. 1995; Genome variation in the SAT types of foot-and-mouth disease viruses prevalent in buffalo ( Syncerus caffer ) in the Kruger National Park and other regions of southern Africa, 1986–1993. Epidemiol Infect 114:203–218
    [Google Scholar]
  50. Vosloo W., Bastos A. D., Kirkbride E., Esterhuysen J. J., Janse van Rensburg D., Bengis R. G., Keet D. F., Thomson G. R. 1996; Persistent infection of African buffalo ( Syncerus caffer ) with SAT-type foot-and-mouth disease viruses: rate of fixation of mutations, antigenic change and interspecies transmission. J Gen Virol 77:1457–1467
    [Google Scholar]
  51. Vosloo W., Bastos A. D. S., Michel A., Thomson G. R. 2001; Tracing movement of African buffalo in southern Africa. Rev Sci Tech 20:630–639
    [Google Scholar]
  52. Xie Q.-C., McCahon D., Crowther J. R., Belsham G. J., McCullough K. C. 1987; Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68:1637–1647
    [Google Scholar]
  53. Zhang G., Haydon D. T., Knowles N. J., McCauley J. W. 1999; Molecular evolution of swine vesicular disease virus. J Gen Virol 80:639–651
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18859-0
Loading
/content/journal/jgv/10.1099/vir.0.18859-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error